Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmirred Structured version   Visualization version   GIF version

Theorem rprmirred 33411
Description: In an integral domain, ring primes are irreducible. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmirred.p 𝑃 = (RPrime‘𝑅)
rprmirred.i 𝐼 = (Irred‘𝑅)
rprmirred.q (𝜑𝑄𝑃)
rprmirred.r (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
rprmirred (𝜑𝑄𝐼)

Proof of Theorem rprmirred
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 rprmirred.p . . . 4 𝑃 = (RPrime‘𝑅)
3 rprmirred.r . . . 4 (𝜑𝑅 ∈ IDomn)
4 rprmirred.q . . . 4 (𝜑𝑄𝑃)
51, 2, 3, 4rprmcl 33398 . . 3 (𝜑𝑄 ∈ (Base‘𝑅))
6 eqid 2726 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
72, 6, 3, 4rprmnunit 33401 . . 3 (𝜑 → ¬ 𝑄 ∈ (Unit‘𝑅))
85, 7eldifd 3959 . 2 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))
9 eqid 2726 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
10 eqid 2726 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
11 eqid 2726 . . . . . . . . 9 (∥r𝑅) = (∥r𝑅)
123ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑅 ∈ IDomn)
1312adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑅 ∈ IDomn)
142, 9, 3, 4rprmnz 33400 . . . . . . . . . 10 (𝜑𝑄 ≠ (0g𝑅))
1514ad4antr 730 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑄 ≠ (0g𝑅))
16 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))
1716adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))
18 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))
1918eldifad 3960 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑦 ∈ (Base‘𝑅))
2019adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑦 ∈ (Base‘𝑅))
21 simplr 767 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → (𝑥(.r𝑅)𝑦) = 𝑄)
2221eqcomd 2732 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑄 = (𝑥(.r𝑅)𝑦))
23 simpr 483 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑄(∥r𝑅)𝑥)
241, 6, 9, 10, 11, 13, 15, 17, 20, 22, 23rprmirredlem 33410 . . . . . . . 8 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑦 ∈ (Unit‘𝑅))
2518adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))
2625eldifbd 3961 . . . . . . . 8 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → ¬ 𝑦 ∈ (Unit‘𝑅))
2724, 26pm2.21fal 1556 . . . . . . 7 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑥) → ⊥)
2812adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑅 ∈ IDomn)
2914ad4antr 730 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑄 ≠ (0g𝑅))
3018adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))
3116eldifad 3960 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑥 ∈ (Base‘𝑅))
3231adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑥 ∈ (Base‘𝑅))
33 simplr 767 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → (𝑥(.r𝑅)𝑦) = 𝑄)
3428idomcringd 20700 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑅 ∈ CRing)
3519adantr 479 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑦 ∈ (Base‘𝑅))
361, 10, 34, 32, 35crngcomd 20233 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑅)𝑥))
3733, 36eqtr3d 2768 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑄 = (𝑦(.r𝑅)𝑥))
38 simpr 483 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑄(∥r𝑅)𝑦)
391, 6, 9, 10, 11, 28, 29, 30, 32, 37, 38rprmirredlem 33410 . . . . . . . 8 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑥 ∈ (Unit‘𝑅))
4016adantr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))
4140eldifbd 3961 . . . . . . . 8 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → ¬ 𝑥 ∈ (Unit‘𝑅))
4239, 41pm2.21fal 1556 . . . . . . 7 (((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r𝑅)𝑦) → ⊥)
434ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑄𝑃)
443idomringd 20701 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
451, 11dvdsrid 20344 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑄 ∈ (Base‘𝑅)) → 𝑄(∥r𝑅)𝑄)
4644, 5, 45syl2anc 582 . . . . . . . . . 10 (𝜑𝑄(∥r𝑅)𝑄)
4746ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑄(∥r𝑅)𝑄)
48 simpr 483 . . . . . . . . 9 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → (𝑥(.r𝑅)𝑦) = 𝑄)
4947, 48breqtrrd 5173 . . . . . . . 8 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → 𝑄(∥r𝑅)(𝑥(.r𝑅)𝑦))
501, 2, 11, 10, 12, 43, 31, 19, 49rprmdvds 33399 . . . . . . 7 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → (𝑄(∥r𝑅)𝑥𝑄(∥r𝑅)𝑦))
5127, 42, 50mpjaodan 956 . . . . . 6 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑄) → ⊥)
5251inegd 1554 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) → ¬ (𝑥(.r𝑅)𝑦) = 𝑄)
5352neqned 2937 . . . 4 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) → (𝑥(.r𝑅)𝑦) ≠ 𝑄)
5453anasss 465 . . 3 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))) → (𝑥(.r𝑅)𝑦) ≠ 𝑄)
5554ralrimivva 3191 . 2 (𝜑 → ∀𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r𝑅)𝑦) ≠ 𝑄)
56 rprmirred.i . . 3 𝐼 = (Irred‘𝑅)
57 eqid 2726 . . 3 ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅))
581, 6, 56, 57, 10isirred 20396 . 2 (𝑄𝐼 ↔ (𝑄 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r𝑅)𝑦) ≠ 𝑄))
598, 55, 58sylanbrc 581 1 (𝜑𝑄𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wfal 1546  wcel 2099  wne 2930  wral 3051  cdif 3945   class class class wbr 5145  cfv 6545  (class class class)co 7415  Basecbs 17207  .rcmulr 17261  0gc0g 17448  Ringcrg 20211  rcdsr 20331  Unitcui 20332  Irredcir 20333  RPrimecrpm 20409  IDomncidom 20666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8966  df-dom 8967  df-sdom 8968  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12258  df-2 12320  df-3 12321  df-sets 17160  df-slot 17178  df-ndx 17190  df-base 17208  df-plusg 17273  df-mulr 17274  df-0g 17450  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18925  df-minusg 18926  df-sbg 18927  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-cring 20214  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-irred 20336  df-rprm 20410  df-nzr 20490  df-domn 20668  df-idom 20669
This theorem is referenced by:  rprmirredb  33412
  Copyright terms: Public domain W3C validator