Step | Hyp | Ref
| Expression |
1 | | eqid 2726 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | rprmirred.p |
. . . 4
⊢ 𝑃 = (RPrime‘𝑅) |
3 | | rprmirred.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ IDomn) |
4 | | rprmirred.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
5 | 1, 2, 3, 4 | rprmcl 33398 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (Base‘𝑅)) |
6 | | eqid 2726 |
. . . 4
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
7 | 2, 6, 3, 4 | rprmnunit 33401 |
. . 3
⊢ (𝜑 → ¬ 𝑄 ∈ (Unit‘𝑅)) |
8 | 5, 7 | eldifd 3959 |
. 2
⊢ (𝜑 → 𝑄 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
9 | | eqid 2726 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
10 | | eqid 2726 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
11 | | eqid 2726 |
. . . . . . . . 9
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
12 | 3 | ad3antrrr 728 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑅 ∈ IDomn) |
13 | 12 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑅 ∈ IDomn) |
14 | 2, 9, 3, 4 | rprmnz 33400 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ≠ (0g‘𝑅)) |
15 | 14 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑄 ≠ (0g‘𝑅)) |
16 | | simpllr 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
17 | 16 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
18 | | simplr 767 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
19 | 18 | eldifad 3960 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑦 ∈ (Base‘𝑅)) |
20 | 19 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑦 ∈ (Base‘𝑅)) |
21 | | simplr 767 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → (𝑥(.r‘𝑅)𝑦) = 𝑄) |
22 | 21 | eqcomd 2732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑄 = (𝑥(.r‘𝑅)𝑦)) |
23 | | simpr 483 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑄(∥r‘𝑅)𝑥) |
24 | 1, 6, 9, 10, 11, 13, 15, 17, 20, 22, 23 | rprmirredlem 33410 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑦 ∈ (Unit‘𝑅)) |
25 | 18 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
26 | 25 | eldifbd 3961 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → ¬ 𝑦 ∈ (Unit‘𝑅)) |
27 | 24, 26 | pm2.21fal 1556 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑥) → ⊥) |
28 | 12 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑅 ∈ IDomn) |
29 | 14 | ad4antr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑄 ≠ (0g‘𝑅)) |
30 | 18 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
31 | 16 | eldifad 3960 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑥 ∈ (Base‘𝑅)) |
32 | 31 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑥 ∈ (Base‘𝑅)) |
33 | | simplr 767 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → (𝑥(.r‘𝑅)𝑦) = 𝑄) |
34 | 28 | idomcringd 20700 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑅 ∈ CRing) |
35 | 19 | adantr 479 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑦 ∈ (Base‘𝑅)) |
36 | 1, 10, 34, 32, 35 | crngcomd 20233 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → (𝑥(.r‘𝑅)𝑦) = (𝑦(.r‘𝑅)𝑥)) |
37 | 33, 36 | eqtr3d 2768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑄 = (𝑦(.r‘𝑅)𝑥)) |
38 | | simpr 483 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑄(∥r‘𝑅)𝑦) |
39 | 1, 6, 9, 10, 11, 28, 29, 30, 32, 37, 38 | rprmirredlem 33410 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑥 ∈ (Unit‘𝑅)) |
40 | 16 | adantr 479 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
41 | 40 | eldifbd 3961 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → ¬ 𝑥 ∈ (Unit‘𝑅)) |
42 | 39, 41 | pm2.21fal 1556 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) ∧ 𝑄(∥r‘𝑅)𝑦) → ⊥) |
43 | 4 | ad3antrrr 728 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑄 ∈ 𝑃) |
44 | 3 | idomringd 20701 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Ring) |
45 | 1, 11 | dvdsrid 20344 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ (Base‘𝑅)) → 𝑄(∥r‘𝑅)𝑄) |
46 | 44, 5, 45 | syl2anc 582 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄(∥r‘𝑅)𝑄) |
47 | 46 | ad3antrrr 728 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑄(∥r‘𝑅)𝑄) |
48 | | simpr 483 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → (𝑥(.r‘𝑅)𝑦) = 𝑄) |
49 | 47, 48 | breqtrrd 5173 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → 𝑄(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦)) |
50 | 1, 2, 11, 10, 12, 43, 31, 19, 49 | rprmdvds 33399 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → (𝑄(∥r‘𝑅)𝑥 ∨ 𝑄(∥r‘𝑅)𝑦)) |
51 | 27, 42, 50 | mpjaodan 956 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑄) → ⊥) |
52 | 51 | inegd 1554 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) → ¬ (𝑥(.r‘𝑅)𝑦) = 𝑄) |
53 | 52 | neqned 2937 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) → (𝑥(.r‘𝑅)𝑦) ≠ 𝑄) |
54 | 53 | anasss 465 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ 𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)))) → (𝑥(.r‘𝑅)𝑦) ≠ 𝑄) |
55 | 54 | ralrimivva 3191 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) ≠ 𝑄) |
56 | | rprmirred.i |
. . 3
⊢ 𝐼 = (Irred‘𝑅) |
57 | | eqid 2726 |
. . 3
⊢
((Base‘𝑅)
∖ (Unit‘𝑅)) =
((Base‘𝑅) ∖
(Unit‘𝑅)) |
58 | 1, 6, 56, 57, 10 | isirred 20396 |
. 2
⊢ (𝑄 ∈ 𝐼 ↔ (𝑄 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ∀𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∀𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) ≠ 𝑄)) |
59 | 8, 55, 58 | sylanbrc 581 |
1
⊢ (𝜑 → 𝑄 ∈ 𝐼) |