Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . 4
⊢
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑙 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑙)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑙)))} = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑙 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑙)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑙)))} |
2 | | aks5lem7.2 |
. . . 4
⊢ 𝑃 = (chr‘𝐾) |
3 | | aks5lem7.3 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Field) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝐾 ∈ Field) |
5 | | aks5lem7.4 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) |
6 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑃 ∈ ℙ) |
7 | | aks5lem7.5 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℕ) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑅 ∈ ℕ) |
9 | | aks5lem7.6 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) |
10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑁 ∈
(ℤ≥‘3)) |
11 | | aks5lem7.7 |
. . . . 5
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
12 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑃 ∥ 𝑁) |
13 | | aks5lem7.8 |
. . . . 5
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
14 | 13 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑁 gcd 𝑅) = 1) |
15 | | aks5lem7.9 |
. . . 4
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
16 | | aks5lem7.10 |
. . . . 5
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) |
17 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) |
18 | | eqid 2740 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
19 | | eqid 2740 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘𝐾)) =
(.g‘(mulGrp‘𝐾)) |
20 | | eqid 2740 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) |
21 | | fldidom 20793 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) |
22 | 3, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ IDomn) |
23 | 22 | idomcringd 20749 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ CRing) |
24 | 18, 2, 19, 20, 23, 5 | frobrhm 21617 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingHom 𝐾)) |
25 | 3, 3, 24, 18, 18 | fldhmf1 42047 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1→(Base‘𝐾)) |
26 | | fvexd 6935 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐾) ∈ V) |
27 | | eqeng 9046 |
. . . . . . . . . 10
⊢
((Base‘𝐾)
∈ V → ((Base‘𝐾) = (Base‘𝐾) → (Base‘𝐾) ≈ (Base‘𝐾))) |
28 | 26, 18, 27 | mpisyl 21 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) ≈ (Base‘𝐾)) |
29 | | aks5lem7.1 |
. . . . . . . . . . 11
⊢ (𝜑 →
(♯‘(Base‘𝐾)) ∈ ℕ) |
30 | 29 | nnnn0d 12613 |
. . . . . . . . . 10
⊢ (𝜑 →
(♯‘(Base‘𝐾)) ∈
ℕ0) |
31 | | hashclb 14407 |
. . . . . . . . . . 11
⊢
((Base‘𝐾)
∈ V → ((Base‘𝐾) ∈ Fin ↔
(♯‘(Base‘𝐾)) ∈
ℕ0)) |
32 | 26, 31 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((Base‘𝐾) ∈ Fin ↔
(♯‘(Base‘𝐾)) ∈
ℕ0)) |
33 | 30, 32 | mpbird 257 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) ∈ Fin) |
34 | | f1finf1o 9333 |
. . . . . . . . 9
⊢
(((Base‘𝐾)
≈ (Base‘𝐾)
∧ (Base‘𝐾) ∈
Fin) → ((𝑥 ∈
(Base‘𝐾) ↦
(𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1→(Base‘𝐾) ↔ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) |
35 | 28, 33, 34 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1→(Base‘𝐾) ↔ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) |
36 | 25, 35 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
37 | 24, 36 | jca 511 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) |
38 | 18, 18 | isrim 20518 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾) ↔ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) |
39 | 37, 38 | sylibr 234 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
40 | 39 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
41 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
42 | | aks5lem7.13 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
43 | 42 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
44 | | aks5lem7.14 |
. . . 4
⊢ 𝑆 =
(Poly1‘(ℤ/nℤ‘𝑁)) |
45 | | aks5lem7.15 |
. . . . 5
⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
46 | | aks5lem7.16 |
. . . . . . . . 9
⊢ 𝑋 =
(var1‘(ℤ/nℤ‘𝑁)) |
47 | 46 | oveq2i 7459 |
. . . . . . . 8
⊢ (𝑅(.g‘(mulGrp‘𝑆))𝑋) = (𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁))) |
48 | 47 | oveq1i 7458 |
. . . . . . 7
⊢ ((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆)) = ((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆)) |
49 | 48 | sneqi 4659 |
. . . . . 6
⊢ {((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))} = {((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))} |
50 | 49 | fveq2i 6923 |
. . . . 5
⊢
((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) |
51 | 45, 50 | eqtri 2768 |
. . . 4
⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) |
52 | | aks5lem7.12 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
53 | 52 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
54 | 1, 2, 4, 6, 8, 10,
12, 14, 15, 17, 40, 41, 43, 44, 51, 46, 53 | aks5lem6 42149 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
55 | 54 | adantr 480 |
. 2
⊢ (((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
56 | | eqid 2740 |
. . . 4
⊢
((mulGrp‘𝐾)
↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) |
57 | | aks5lem7.11 |
. . . . 5
⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) |
58 | 3 | flddrngd 20763 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ DivRing) |
59 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(Unit‘𝐾) =
(Unit‘𝐾) |
60 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(0g‘𝐾) = (0g‘𝐾) |
61 | 18, 59, 60 | isdrng 20755 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧
(Unit‘𝐾) =
((Base‘𝐾) ∖
{(0g‘𝐾)}))) |
62 | 61 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝐾 ∈ DivRing → (𝐾 ∈ Ring ∧
(Unit‘𝐾) =
((Base‘𝐾) ∖
{(0g‘𝐾)}))) |
63 | 58, 62 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖
{(0g‘𝐾)}))) |
64 | 63 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (Unit‘𝐾) = ((Base‘𝐾) ∖
{(0g‘𝐾)})) |
65 | 64 | fveq2d 6924 |
. . . . . . 7
⊢ (𝜑 →
(♯‘(Unit‘𝐾)) = (♯‘((Base‘𝐾) ∖
{(0g‘𝐾)}))) |
66 | 63 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Ring) |
67 | | ringgrp 20265 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Ring → 𝐾 ∈ Grp) |
68 | 66, 67 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Grp) |
69 | 18, 60 | grpidcl 19005 |
. . . . . . . . 9
⊢ (𝐾 ∈ Grp →
(0g‘𝐾)
∈ (Base‘𝐾)) |
70 | 68, 69 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝐾) ∈ (Base‘𝐾)) |
71 | | hashdifsn 14463 |
. . . . . . . 8
⊢
(((Base‘𝐾)
∈ Fin ∧ (0g‘𝐾) ∈ (Base‘𝐾)) → (♯‘((Base‘𝐾) ∖
{(0g‘𝐾)}))
= ((♯‘(Base‘𝐾)) − 1)) |
72 | 33, 70, 71 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 →
(♯‘((Base‘𝐾) ∖ {(0g‘𝐾)})) =
((♯‘(Base‘𝐾)) − 1)) |
73 | 65, 72 | eqtr2d 2781 |
. . . . . 6
⊢ (𝜑 →
((♯‘(Base‘𝐾)) − 1) =
(♯‘(Unit‘𝐾))) |
74 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
75 | 74, 18 | mgpbas 20167 |
. . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
76 | 75 | eqcomi 2749 |
. . . . . . . . . 10
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘𝐾) |
77 | 76, 59 | unitss 20402 |
. . . . . . . . 9
⊢
(Unit‘𝐾)
⊆ (Base‘(mulGrp‘𝐾)) |
78 | 77 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (Unit‘𝐾) ⊆
(Base‘(mulGrp‘𝐾))) |
79 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾)) |
80 | 56, 79 | ressbas2 17296 |
. . . . . . . 8
⊢
((Unit‘𝐾)
⊆ (Base‘(mulGrp‘𝐾)) → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s
(Unit‘𝐾)))) |
81 | 78, 80 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (Unit‘𝐾) =
(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) |
82 | 81 | fveq2d 6924 |
. . . . . 6
⊢ (𝜑 →
(♯‘(Unit‘𝐾)) =
(♯‘(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))) |
83 | 73, 82 | eqtrd 2780 |
. . . . 5
⊢ (𝜑 →
((♯‘(Base‘𝐾)) − 1) =
(♯‘(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))) |
84 | 57, 83 | breqtrd 5192 |
. . . 4
⊢ (𝜑 → 𝑅 ∥
(♯‘(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))) |
85 | 56, 22, 33, 7, 84 | unitscyglem5 42156 |
. . 3
⊢ (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) ≠ ∅) |
86 | | n0rex 4380 |
. . 3
⊢
(((mulGrp‘𝐾)
PrimRoots 𝑅) ≠ ∅
→ ∃𝑚 ∈
((mulGrp‘𝐾) PrimRoots
𝑅)𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
87 | 85, 86 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
88 | 55, 87 | r19.29a 3168 |
1
⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |