| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . 4
⊢
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑙 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑙)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑙)))} = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑙 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑙)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑙)))} | 
| 2 |  | aks5lem7.2 | . . . 4
⊢ 𝑃 = (chr‘𝐾) | 
| 3 |  | aks5lem7.3 | . . . . 5
⊢ (𝜑 → 𝐾 ∈ Field) | 
| 4 | 3 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝐾 ∈ Field) | 
| 5 |  | aks5lem7.4 | . . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 6 | 5 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑃 ∈ ℙ) | 
| 7 |  | aks5lem7.5 | . . . . 5
⊢ (𝜑 → 𝑅 ∈ ℕ) | 
| 8 | 7 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑅 ∈ ℕ) | 
| 9 |  | aks5lem7.6 | . . . . 5
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) | 
| 10 | 9 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑁 ∈
(ℤ≥‘3)) | 
| 11 |  | aks5lem7.7 | . . . . 5
⊢ (𝜑 → 𝑃 ∥ 𝑁) | 
| 12 | 11 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑃 ∥ 𝑁) | 
| 13 |  | aks5lem7.8 | . . . . 5
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | 
| 14 | 13 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑁 gcd 𝑅) = 1) | 
| 15 |  | aks5lem7.9 | . . . 4
⊢ 𝐴 =
(⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | 
| 16 |  | aks5lem7.10 | . . . . 5
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) | 
| 17 | 16 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) | 
| 18 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 19 |  | eqid 2736 | . . . . . . . 8
⊢
(.g‘(mulGrp‘𝐾)) =
(.g‘(mulGrp‘𝐾)) | 
| 20 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) | 
| 21 |  | fldidom 20772 | . . . . . . . . . 10
⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) | 
| 22 | 3, 21 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ IDomn) | 
| 23 | 22 | idomcringd 20728 | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ CRing) | 
| 24 | 18, 2, 19, 20, 23, 5 | frobrhm 21595 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingHom 𝐾)) | 
| 25 | 3, 3, 24, 18, 18 | fldhmf1 42092 | . . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1→(Base‘𝐾)) | 
| 26 |  | fvexd 6920 | . . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐾) ∈ V) | 
| 27 |  | eqeng 9027 | . . . . . . . . . 10
⊢
((Base‘𝐾)
∈ V → ((Base‘𝐾) = (Base‘𝐾) → (Base‘𝐾) ≈ (Base‘𝐾))) | 
| 28 | 26, 18, 27 | mpisyl 21 | . . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) ≈ (Base‘𝐾)) | 
| 29 |  | aks5lem7.1 | . . . . . . . . . . 11
⊢ (𝜑 →
(♯‘(Base‘𝐾)) ∈ ℕ) | 
| 30 | 29 | nnnn0d 12589 | . . . . . . . . . 10
⊢ (𝜑 →
(♯‘(Base‘𝐾)) ∈
ℕ0) | 
| 31 |  | hashclb 14398 | . . . . . . . . . . 11
⊢
((Base‘𝐾)
∈ V → ((Base‘𝐾) ∈ Fin ↔
(♯‘(Base‘𝐾)) ∈
ℕ0)) | 
| 32 | 26, 31 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ((Base‘𝐾) ∈ Fin ↔
(♯‘(Base‘𝐾)) ∈
ℕ0)) | 
| 33 | 30, 32 | mpbird 257 | . . . . . . . . 9
⊢ (𝜑 → (Base‘𝐾) ∈ Fin) | 
| 34 |  | f1finf1o 9306 | . . . . . . . . 9
⊢
(((Base‘𝐾)
≈ (Base‘𝐾)
∧ (Base‘𝐾) ∈
Fin) → ((𝑥 ∈
(Base‘𝐾) ↦
(𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1→(Base‘𝐾) ↔ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) | 
| 35 | 28, 33, 34 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1→(Base‘𝐾) ↔ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) | 
| 36 | 25, 35 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 37 | 24, 36 | jca 511 | . . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) | 
| 38 | 18, 18 | isrim 20493 | . . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾) ↔ ((𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingHom 𝐾) ∧ (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)):(Base‘𝐾)–1-1-onto→(Base‘𝐾))) | 
| 39 | 37, 38 | sylibr 234 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | 
| 40 | 39 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | 
| 41 |  | simpr 484 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | 
| 42 |  | aks5lem7.13 | . . . . 5
⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | 
| 43 | 42 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | 
| 44 |  | aks5lem7.14 | . . . 4
⊢ 𝑆 =
(Poly1‘(ℤ/nℤ‘𝑁)) | 
| 45 |  | aks5lem7.15 | . . . . 5
⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | 
| 46 |  | aks5lem7.16 | . . . . . . . . 9
⊢ 𝑋 =
(var1‘(ℤ/nℤ‘𝑁)) | 
| 47 | 46 | oveq2i 7443 | . . . . . . . 8
⊢ (𝑅(.g‘(mulGrp‘𝑆))𝑋) = (𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁))) | 
| 48 | 47 | oveq1i 7442 | . . . . . . 7
⊢ ((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆)) = ((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆)) | 
| 49 | 48 | sneqi 4636 | . . . . . 6
⊢ {((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))} = {((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))} | 
| 50 | 49 | fveq2i 6908 | . . . . 5
⊢
((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) | 
| 51 | 45, 50 | eqtri 2764 | . . . 4
⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) | 
| 52 |  | aks5lem7.12 | . . . . 5
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | 
| 53 | 52 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | 
| 54 | 1, 2, 4, 6, 8, 10,
12, 14, 15, 17, 40, 41, 43, 44, 51, 46, 53 | aks5lem6 42194 | . . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) | 
| 55 | 54 | adantr 480 | . 2
⊢ (((𝜑 ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) ∧ 𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) | 
| 56 |  | eqid 2736 | . . . 4
⊢
((mulGrp‘𝐾)
↾s (Unit‘𝐾)) = ((mulGrp‘𝐾) ↾s (Unit‘𝐾)) | 
| 57 |  | aks5lem7.11 | . . . . 5
⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) | 
| 58 | 3 | flddrngd 20742 | . . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ DivRing) | 
| 59 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Unit‘𝐾) =
(Unit‘𝐾) | 
| 60 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(0g‘𝐾) = (0g‘𝐾) | 
| 61 | 18, 59, 60 | isdrng 20734 | . . . . . . . . . . 11
⊢ (𝐾 ∈ DivRing ↔ (𝐾 ∈ Ring ∧
(Unit‘𝐾) =
((Base‘𝐾) ∖
{(0g‘𝐾)}))) | 
| 62 | 61 | biimpi 216 | . . . . . . . . . 10
⊢ (𝐾 ∈ DivRing → (𝐾 ∈ Ring ∧
(Unit‘𝐾) =
((Base‘𝐾) ∖
{(0g‘𝐾)}))) | 
| 63 | 58, 62 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ Ring ∧ (Unit‘𝐾) = ((Base‘𝐾) ∖
{(0g‘𝐾)}))) | 
| 64 | 63 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → (Unit‘𝐾) = ((Base‘𝐾) ∖
{(0g‘𝐾)})) | 
| 65 | 64 | fveq2d 6909 | . . . . . . 7
⊢ (𝜑 →
(♯‘(Unit‘𝐾)) = (♯‘((Base‘𝐾) ∖
{(0g‘𝐾)}))) | 
| 66 | 63 | simpld 494 | . . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Ring) | 
| 67 |  | ringgrp 20236 | . . . . . . . . . 10
⊢ (𝐾 ∈ Ring → 𝐾 ∈ Grp) | 
| 68 | 66, 67 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Grp) | 
| 69 | 18, 60 | grpidcl 18984 | . . . . . . . . 9
⊢ (𝐾 ∈ Grp →
(0g‘𝐾)
∈ (Base‘𝐾)) | 
| 70 | 68, 69 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (0g‘𝐾) ∈ (Base‘𝐾)) | 
| 71 |  | hashdifsn 14454 | . . . . . . . 8
⊢
(((Base‘𝐾)
∈ Fin ∧ (0g‘𝐾) ∈ (Base‘𝐾)) → (♯‘((Base‘𝐾) ∖
{(0g‘𝐾)}))
= ((♯‘(Base‘𝐾)) − 1)) | 
| 72 | 33, 70, 71 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 →
(♯‘((Base‘𝐾) ∖ {(0g‘𝐾)})) =
((♯‘(Base‘𝐾)) − 1)) | 
| 73 | 65, 72 | eqtr2d 2777 | . . . . . 6
⊢ (𝜑 →
((♯‘(Base‘𝐾)) − 1) =
(♯‘(Unit‘𝐾))) | 
| 74 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) | 
| 75 | 74, 18 | mgpbas 20143 | . . . . . . . . . . 11
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) | 
| 76 | 75 | eqcomi 2745 | . . . . . . . . . 10
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘𝐾) | 
| 77 | 76, 59 | unitss 20377 | . . . . . . . . 9
⊢
(Unit‘𝐾)
⊆ (Base‘(mulGrp‘𝐾)) | 
| 78 | 77 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → (Unit‘𝐾) ⊆
(Base‘(mulGrp‘𝐾))) | 
| 79 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘(mulGrp‘𝐾)) | 
| 80 | 56, 79 | ressbas2 17284 | . . . . . . . 8
⊢
((Unit‘𝐾)
⊆ (Base‘(mulGrp‘𝐾)) → (Unit‘𝐾) = (Base‘((mulGrp‘𝐾) ↾s
(Unit‘𝐾)))) | 
| 81 | 78, 80 | syl 17 | . . . . . . 7
⊢ (𝜑 → (Unit‘𝐾) =
(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾)))) | 
| 82 | 81 | fveq2d 6909 | . . . . . 6
⊢ (𝜑 →
(♯‘(Unit‘𝐾)) =
(♯‘(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))) | 
| 83 | 73, 82 | eqtrd 2776 | . . . . 5
⊢ (𝜑 →
((♯‘(Base‘𝐾)) − 1) =
(♯‘(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))) | 
| 84 | 57, 83 | breqtrd 5168 | . . . 4
⊢ (𝜑 → 𝑅 ∥
(♯‘(Base‘((mulGrp‘𝐾) ↾s (Unit‘𝐾))))) | 
| 85 | 56, 22, 33, 7, 84 | unitscyglem5 42201 | . . 3
⊢ (𝜑 → ((mulGrp‘𝐾) PrimRoots 𝑅) ≠ ∅) | 
| 86 |  | n0rex 4356 | . . 3
⊢
(((mulGrp‘𝐾)
PrimRoots 𝑅) ≠ ∅
→ ∃𝑚 ∈
((mulGrp‘𝐾) PrimRoots
𝑅)𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | 
| 87 | 85, 86 | syl 17 | . 2
⊢ (𝜑 → ∃𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)𝑚 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | 
| 88 | 55, 87 | r19.29a 3161 | 1
⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |