![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elin1d | Structured version Visualization version GIF version |
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
Ref | Expression |
---|---|
elin1d.1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Ref | Expression |
---|---|
elin1d | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin1d.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
2 | elinel1 4196 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 |
This theorem is referenced by: ordtypelem3 9515 ordtypelem4 9516 ordtypelem7 9519 infpwfien 10057 ttukeylem6 10509 fpwwe2lem11 10636 explecnv 15811 smuval2 16423 submrc 17572 coffth 17887 catcbascl 18062 catcoppcclOLD 18068 catcfucclOLD 18070 catcxpcclOLD 18160 acsfiindd 18506 frgpnabllem2 19742 ablfac2 19959 2idllidld 20866 zringlpirlem2 21033 mplind 21631 neiptoptop 22635 restbas 22662 subbascn 22758 cnconn 22926 clsconn 22934 conncompclo 22939 cldllycmp 22999 llycmpkgen2 23054 1stckgenlem 23057 txcls 23108 txcnp 23124 ptcnplem 23125 xkopt 23159 txconn 23193 basqtop 23215 tgqtop 23216 kqnrmlem1 23247 kqnrmlem2 23248 nrmhmph 23298 ptcmplem5 23560 restutop 23742 blin2 23935 met2ndci 24031 zdis 24332 reconnlem2 24343 cnheibor 24471 lebnum 24480 nmoleub2lem 24630 nmoleub2lem3 24631 nmoleub2lem2 24632 nmoleub3 24635 nmhmcn 24636 minveclem4 24949 ovolicc2lem5 25038 ioorcl 25094 ig1peu 25689 taylfvallem1 25869 tayl0 25874 ppisval 26608 ppinprm 26656 chtnprm 26658 chtleppi 26713 pclogsum 26718 chpchtsum 26722 chpub 26723 chebbnd1lem1 26972 chtppilimlem1 26976 rplogsum 27030 perpcom 27964 perpneq 27965 ragperp 27968 tocyc01 32277 cyc3evpm 32309 cycpmgcl 32312 cycpmconjslem2 32314 cyc3conja 32316 idomringd 32375 idomrcan 32377 unitpidl1 32542 mxidlirredi 32587 mxidlirred 32588 lbsdiflsp0 32711 esum2d 33091 ispisys2 33151 sigapisys 33153 sigapildsyslem 33159 sigapildsys 33160 eulerpartlemgvv 33375 tgoldbachgt 33675 fvineqsneq 36293 pibt2 36298 limclner 44367 thincciso 47669 |
Copyright terms: Public domain | W3C validator |