![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elin1d | Structured version Visualization version GIF version |
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
Ref | Expression |
---|---|
elin1d.1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Ref | Expression |
---|---|
elin1d | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin1d.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
2 | elinel1 4194 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3954 |
This theorem is referenced by: ordtypelem3 9517 ordtypelem4 9518 ordtypelem7 9521 infpwfien 10059 ttukeylem6 10511 fpwwe2lem11 10638 explecnv 15815 smuval2 16427 submrc 17576 coffth 17891 catcbascl 18066 catcoppcclOLD 18072 catcfucclOLD 18074 catcxpcclOLD 18164 acsfiindd 18510 frgpnabllem2 19783 ablfac2 20000 2idllidld 21015 zringlpirlem2 21234 mplind 21850 neiptoptop 22855 restbas 22882 subbascn 22978 cnconn 23146 clsconn 23154 conncompclo 23159 cldllycmp 23219 llycmpkgen2 23274 1stckgenlem 23277 txcls 23328 txcnp 23344 ptcnplem 23345 xkopt 23379 txconn 23413 basqtop 23435 tgqtop 23436 kqnrmlem1 23467 kqnrmlem2 23468 nrmhmph 23518 ptcmplem5 23780 restutop 23962 blin2 24155 met2ndci 24251 zdis 24552 reconnlem2 24563 cnheibor 24701 lebnum 24710 nmoleub2lem 24861 nmoleub2lem3 24862 nmoleub2lem2 24863 nmoleub3 24866 nmhmcn 24867 minveclem4 25180 ovolicc2lem5 25270 ioorcl 25326 ig1peu 25924 taylfvallem1 26105 tayl0 26110 ppisval 26844 ppinprm 26892 chtnprm 26894 chtleppi 26949 pclogsum 26954 chpchtsum 26958 chpub 26959 chebbnd1lem1 27208 chtppilimlem1 27212 rplogsum 27266 perpcom 28231 perpneq 28232 ragperp 28235 tocyc01 32547 cyc3evpm 32579 cycpmgcl 32582 cycpmconjslem2 32584 cyc3conja 32586 idomringd 32645 idomrcan 32647 unitpidl1 32816 mxidlirredi 32861 mxidlirred 32862 lbsdiflsp0 32999 esum2d 33389 ispisys2 33449 sigapisys 33451 sigapildsyslem 33457 sigapildsys 33458 eulerpartlemgvv 33673 tgoldbachgt 33973 fvineqsneq 36596 pibt2 36601 limclner 44665 thincciso 47756 |
Copyright terms: Public domain | W3C validator |