Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elin1d | Structured version Visualization version GIF version |
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
Ref | Expression |
---|---|
elin1d.1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Ref | Expression |
---|---|
elin1d | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin1d.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
2 | elinel1 4125 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 |
This theorem is referenced by: ordtypelem3 9209 ordtypelem4 9210 ordtypelem7 9213 infpwfien 9749 ttukeylem6 10201 fpwwe2lem11 10328 explecnv 15505 smuval2 16117 submrc 17254 coffth 17568 catcbascl 17743 catcoppcclOLD 17749 catcfucclOLD 17751 catcxpcclOLD 17841 acsfiindd 18186 frgpnabllem2 19390 ablfac2 19607 zringlpirlem2 20597 mplind 21188 neiptoptop 22190 restbas 22217 subbascn 22313 cnconn 22481 clsconn 22489 conncompclo 22494 cldllycmp 22554 llycmpkgen2 22609 1stckgenlem 22612 txcls 22663 txcnp 22679 ptcnplem 22680 xkopt 22714 txconn 22748 basqtop 22770 tgqtop 22771 kqnrmlem1 22802 kqnrmlem2 22803 nrmhmph 22853 ptcmplem5 23115 restutop 23297 blin2 23490 met2ndci 23584 zdis 23885 reconnlem2 23896 cnheibor 24024 lebnum 24033 nmoleub2lem 24183 nmoleub2lem3 24184 nmoleub2lem2 24185 nmoleub3 24188 nmhmcn 24189 minveclem4 24501 ovolicc2lem5 24590 ioorcl 24646 ig1peu 25241 taylfvallem1 25421 tayl0 25426 ppisval 26158 ppinprm 26206 chtnprm 26208 chtleppi 26263 pclogsum 26268 chpchtsum 26272 chpub 26273 chebbnd1lem1 26522 chtppilimlem1 26526 rplogsum 26580 perpcom 26978 perpneq 26979 ragperp 26982 tocyc01 31287 cyc3evpm 31319 cycpmgcl 31322 cycpmconjslem2 31324 cyc3conja 31326 lbsdiflsp0 31609 esum2d 31961 ispisys2 32021 sigapisys 32023 sigapildsyslem 32029 sigapildsys 32030 eulerpartlemgvv 32243 tgoldbachgt 32543 fvineqsneq 35510 pibt2 35515 limclner 43082 thincciso 46218 |
Copyright terms: Public domain | W3C validator |