![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elin1d | Structured version Visualization version GIF version |
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
Ref | Expression |
---|---|
elin1d.1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Ref | Expression |
---|---|
elin1d | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin1d.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
2 | elinel1 4191 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∩ cin 3943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 |
This theorem is referenced by: ordtypelem3 9535 ordtypelem4 9536 ordtypelem7 9539 infpwfien 10077 ttukeylem6 10529 fpwwe2lem11 10656 explecnv 15835 smuval2 16448 submrc 17599 coffth 17916 catcbascl 18092 catcoppcclOLD 18098 catcfucclOLD 18100 catcxpcclOLD 18190 acsfiindd 18536 frgpnabllem2 19820 ablfac2 20037 2idllidld 21137 idomringd 21244 zringlpirlem2 21376 mplind 22001 neiptoptop 23022 restbas 23049 subbascn 23145 cnconn 23313 clsconn 23321 conncompclo 23326 cldllycmp 23386 llycmpkgen2 23441 1stckgenlem 23444 txcls 23495 txcnp 23511 ptcnplem 23512 xkopt 23546 txconn 23580 basqtop 23602 tgqtop 23603 kqnrmlem1 23634 kqnrmlem2 23635 nrmhmph 23685 ptcmplem5 23947 restutop 24129 blin2 24322 met2ndci 24418 zdis 24719 reconnlem2 24730 cnheibor 24868 lebnum 24877 nmoleub2lem 25028 nmoleub2lem3 25029 nmoleub2lem2 25030 nmoleub3 25033 nmhmcn 25034 minveclem4 25347 ovolicc2lem5 25437 ioorcl 25493 ig1peu 26096 taylfvallem1 26278 tayl0 26283 ppisval 27023 ppinprm 27071 chtnprm 27073 chtleppi 27130 pclogsum 27135 chpchtsum 27139 chpub 27140 chebbnd1lem1 27389 chtppilimlem1 27393 rplogsum 27447 perpcom 28504 perpneq 28505 ragperp 28508 tocyc01 32817 cyc3evpm 32849 cycpmgcl 32852 cycpmconjslem2 32854 cyc3conja 32856 idomrcan 32915 unitpidl1 33075 mxidlirredi 33120 mxidlirred 33121 lbsdiflsp0 33256 esum2d 33648 ispisys2 33708 sigapisys 33710 sigapildsyslem 33716 sigapildsys 33717 eulerpartlemgvv 33932 tgoldbachgt 34231 fvineqsneq 36827 pibt2 36832 limclner 44962 thincciso 47978 |
Copyright terms: Public domain | W3C validator |