![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version |
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | 1 | idomcringd 21273 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
3 | 2 | crngringd 20198 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Ringcrg 20185 IDomncidom 21245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-cring 20188 df-idom 21249 |
This theorem is referenced by: fracfld 33094 dvdsruasso 33197 dvdsruasso2 33198 unitpidl1 33236 mxidlirredi 33283 mxidlirred 33284 rsprprmprmidlb 33335 rprmasso 33337 rprmasso2 33338 unitmulrprm 33340 rprmirred 33343 rprmirredb 33344 1arithidomlem1 33347 1arithidomlem2 33348 1arithidom 33349 pidufd 33358 dfufd2lem 33364 dfufd2 33365 r1pid2 33410 algextdeglem7 33522 idomnnzpownz 41735 deg1gprod 41743 deg1pow 41744 aks6d1c6lem3 41775 |
Copyright terms: Public domain | W3C validator |