| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20636 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | crngringd 20155 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20142 IDomncidom 20602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-cring 20145 df-idom 20605 |
| This theorem is referenced by: fracfld 33258 dvdsruasso 33356 dvdsruasso2 33357 unitpidl1 33395 mxidlirredi 33442 mxidlirred 33443 rsprprmprmidlb 33494 rprmasso 33496 rprmasso2 33497 unitmulrprm 33499 rprmirred 33502 rprmirredb 33503 1arithidomlem1 33506 1arithidomlem2 33507 1arithidom 33508 pidufd 33514 1arithufdlem2 33516 1arithufdlem4 33518 dfufd2lem 33520 dfufd2 33521 r1pid2OLD 33574 assafld 33633 fldextrspunlem1 33670 algextdeglem7 33713 idomnnzpownz 42120 deg1gprod 42128 deg1pow 42129 aks6d1c6lem3 42160 unitscyglem5 42187 |
| Copyright terms: Public domain | W3C validator |