MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomringd Structured version   Visualization version   GIF version

Theorem idomringd 20632
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomringd (𝜑𝑅 ∈ Ring)

Proof of Theorem idomringd
StepHypRef Expression
1 idomringd.1 . . 3 (𝜑𝑅 ∈ IDomn)
21idomcringd 20631 . 2 (𝜑𝑅 ∈ CRing)
32crngringd 20150 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Ringcrg 20137  IDomncidom 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-cring 20140  df-idom 20600
This theorem is referenced by:  fracfld  33266  dvdsruasso  33341  dvdsruasso2  33342  unitpidl1  33380  mxidlirredi  33427  mxidlirred  33428  rsprprmprmidlb  33479  rprmasso  33481  rprmasso2  33482  unitmulrprm  33484  rprmirred  33487  rprmirredb  33488  1arithidomlem1  33491  1arithidomlem2  33492  1arithidom  33493  pidufd  33499  1arithufdlem2  33501  1arithufdlem4  33503  dfufd2lem  33505  dfufd2  33506  r1pid2OLD  33560  assafld  33623  fldextrspunlem1  33661  algextdeglem7  33709  idomnnzpownz  42125  deg1gprod  42133  deg1pow  42134  aks6d1c6lem3  42165  unitscyglem5  42192
  Copyright terms: Public domain W3C validator