| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20630 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | crngringd 20149 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20136 IDomncidom 20596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-cring 20139 df-idom 20599 |
| This theorem is referenced by: fracfld 33260 dvdsruasso 33335 dvdsruasso2 33336 unitpidl1 33374 mxidlirredi 33421 mxidlirred 33422 rsprprmprmidlb 33473 rprmasso 33475 rprmasso2 33476 unitmulrprm 33478 rprmirred 33481 rprmirredb 33482 1arithidomlem1 33485 1arithidomlem2 33486 1arithidom 33487 pidufd 33493 1arithufdlem2 33495 1arithufdlem4 33497 dfufd2lem 33499 dfufd2 33500 r1pid2OLD 33553 assafld 33612 fldextrspunlem1 33649 algextdeglem7 33692 idomnnzpownz 42108 deg1gprod 42116 deg1pow 42117 aks6d1c6lem3 42148 unitscyglem5 42175 |
| Copyright terms: Public domain | W3C validator |