MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomringd Structured version   Visualization version   GIF version

Theorem idomringd 20644
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomringd (𝜑𝑅 ∈ Ring)

Proof of Theorem idomringd
StepHypRef Expression
1 idomringd.1 . . 3 (𝜑𝑅 ∈ IDomn)
21idomcringd 20643 . 2 (𝜑𝑅 ∈ CRing)
32crngringd 20162 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Ringcrg 20149  IDomncidom 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-cring 20152  df-idom 20612
This theorem is referenced by:  fracfld  33265  dvdsruasso  33363  dvdsruasso2  33364  unitpidl1  33402  mxidlirredi  33449  mxidlirred  33450  rsprprmprmidlb  33501  rprmasso  33503  rprmasso2  33504  unitmulrprm  33506  rprmirred  33509  rprmirredb  33510  1arithidomlem1  33513  1arithidomlem2  33514  1arithidom  33515  pidufd  33521  1arithufdlem2  33523  1arithufdlem4  33525  dfufd2lem  33527  dfufd2  33528  r1pid2OLD  33581  assafld  33640  fldextrspunlem1  33677  algextdeglem7  33720  idomnnzpownz  42127  deg1gprod  42135  deg1pow  42136  aks6d1c6lem3  42167  unitscyglem5  42194
  Copyright terms: Public domain W3C validator