MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomringd Structured version   Visualization version   GIF version

Theorem idomringd 21218
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomringd (𝜑𝑅 ∈ Ring)

Proof of Theorem idomringd
StepHypRef Expression
1 idomringd.1 . . . 4 (𝜑𝑅 ∈ IDomn)
2 df-idom 21195 . . . 4 IDomn = (CRing ∩ Domn)
31, 2eleqtrdi 2837 . . 3 (𝜑𝑅 ∈ (CRing ∩ Domn))
43elin1d 4193 . 2 (𝜑𝑅 ∈ CRing)
54crngringd 20151 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  cin 3942  Ringcrg 20138  CRingccrg 20139  Domncdomn 21190  IDomncidom 21191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6489  df-fv 6545  df-cring 20141  df-idom 21195
This theorem is referenced by:  dvdsruasso  32996  unitpidl1  33048  mxidlirredi  33093  mxidlirred  33094  r1pid2  33184  algextdeglem7  33300  idomnnzpownz  41508  deg1gprod  41517  deg1pow  41518
  Copyright terms: Public domain W3C validator