| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20651 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | crngringd 20172 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Ringcrg 20159 IDomncidom 20617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-cring 20162 df-idom 20620 |
| This theorem is referenced by: fracfld 33318 dvdsruasso 33394 dvdsruasso2 33395 unitpidl1 33433 mxidlirredi 33480 mxidlirred 33481 rsprprmprmidlb 33532 rprmasso 33534 rprmasso2 33535 unitmulrprm 33537 rprmirred 33540 rprmirredb 33541 1arithidomlem1 33544 1arithidomlem2 33545 1arithidom 33546 pidufd 33552 1arithufdlem2 33554 1arithufdlem4 33556 dfufd2lem 33558 dfufd2 33559 deg1prod 33592 r1pid2OLD 33618 vietadeg1 33662 vietalem 33663 vieta 33664 assafld 33722 fldextrspunlem1 33760 algextdeglem7 33808 idomnnzpownz 42298 deg1gprod 42306 deg1pow 42307 aks6d1c6lem3 42338 unitscyglem5 42365 |
| Copyright terms: Public domain | W3C validator |