| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20687 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | crngringd 20206 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 20193 IDomncidom 20653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-cring 20196 df-idom 20656 |
| This theorem is referenced by: fracfld 33302 dvdsruasso 33400 dvdsruasso2 33401 unitpidl1 33439 mxidlirredi 33486 mxidlirred 33487 rsprprmprmidlb 33538 rprmasso 33540 rprmasso2 33541 unitmulrprm 33543 rprmirred 33546 rprmirredb 33547 1arithidomlem1 33550 1arithidomlem2 33551 1arithidom 33552 pidufd 33558 1arithufdlem2 33560 1arithufdlem4 33562 dfufd2lem 33564 dfufd2 33565 r1pid2OLD 33618 assafld 33677 fldextrspunlem1 33716 algextdeglem7 33757 idomnnzpownz 42145 deg1gprod 42153 deg1pow 42154 aks6d1c6lem3 42185 unitscyglem5 42212 |
| Copyright terms: Public domain | W3C validator |