![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version |
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | 1 | idomcringd 20749 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
3 | 2 | crngringd 20273 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 20260 IDomncidom 20715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-cring 20263 df-idom 20718 |
This theorem is referenced by: fracfld 33275 dvdsruasso 33378 dvdsruasso2 33379 unitpidl1 33417 mxidlirredi 33464 mxidlirred 33465 rsprprmprmidlb 33516 rprmasso 33518 rprmasso2 33519 unitmulrprm 33521 rprmirred 33524 rprmirredb 33525 1arithidomlem1 33528 1arithidomlem2 33529 1arithidom 33530 pidufd 33536 1arithufdlem2 33538 1arithufdlem4 33540 dfufd2lem 33542 dfufd2 33543 r1pid2OLD 33594 assafld 33650 algextdeglem7 33714 idomnnzpownz 42089 deg1gprod 42097 deg1pow 42098 aks6d1c6lem3 42129 unitscyglem5 42156 |
Copyright terms: Public domain | W3C validator |