MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomringd Structured version   Visualization version   GIF version

Theorem idomringd 21274
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomringd (𝜑𝑅 ∈ Ring)

Proof of Theorem idomringd
StepHypRef Expression
1 idomringd.1 . . 3 (𝜑𝑅 ∈ IDomn)
21idomcringd 21273 . 2 (𝜑𝑅 ∈ CRing)
32crngringd 20198 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Ringcrg 20185  IDomncidom 21245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-cring 20188  df-idom 21249
This theorem is referenced by:  fracfld  33094  dvdsruasso  33197  dvdsruasso2  33198  unitpidl1  33236  mxidlirredi  33283  mxidlirred  33284  rsprprmprmidlb  33335  rprmasso  33337  rprmasso2  33338  unitmulrprm  33340  rprmirred  33343  rprmirredb  33344  1arithidomlem1  33347  1arithidomlem2  33348  1arithidom  33349  pidufd  33358  dfufd2lem  33364  dfufd2  33365  r1pid2  33410  algextdeglem7  33522  idomnnzpownz  41735  deg1gprod  41743  deg1pow  41744  aks6d1c6lem3  41775
  Copyright terms: Public domain W3C validator