MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomringd Structured version   Visualization version   GIF version

Theorem idomringd 20613
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomringd (𝜑𝑅 ∈ Ring)

Proof of Theorem idomringd
StepHypRef Expression
1 idomringd.1 . . 3 (𝜑𝑅 ∈ IDomn)
21idomcringd 20612 . 2 (𝜑𝑅 ∈ CRing)
32crngringd 20131 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Ringcrg 20118  IDomncidom 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-cring 20121  df-idom 20581
This theorem is referenced by:  fracfld  33231  dvdsruasso  33329  dvdsruasso2  33330  unitpidl1  33368  mxidlirredi  33415  mxidlirred  33416  rsprprmprmidlb  33467  rprmasso  33469  rprmasso2  33470  unitmulrprm  33472  rprmirred  33475  rprmirredb  33476  1arithidomlem1  33479  1arithidomlem2  33480  1arithidom  33481  pidufd  33487  1arithufdlem2  33489  1arithufdlem4  33491  dfufd2lem  33493  dfufd2  33494  r1pid2OLD  33547  assafld  33606  fldextrspunlem1  33643  algextdeglem7  33686  idomnnzpownz  42093  deg1gprod  42101  deg1pow  42102  aks6d1c6lem3  42133  unitscyglem5  42160
  Copyright terms: Public domain W3C validator