| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20637 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | crngringd 20159 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Ringcrg 20146 IDomncidom 20603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-cring 20149 df-idom 20606 |
| This theorem is referenced by: fracfld 33266 dvdsruasso 33342 dvdsruasso2 33343 unitpidl1 33381 mxidlirredi 33428 mxidlirred 33429 rsprprmprmidlb 33480 rprmasso 33482 rprmasso2 33483 unitmulrprm 33485 rprmirred 33488 rprmirredb 33489 1arithidomlem1 33492 1arithidomlem2 33493 1arithidom 33494 pidufd 33500 1arithufdlem2 33502 1arithufdlem4 33504 dfufd2lem 33506 dfufd2 33507 r1pid2OLD 33561 assafld 33642 fldextrspunlem1 33680 algextdeglem7 33728 idomnnzpownz 42165 deg1gprod 42173 deg1pow 42174 aks6d1c6lem3 42205 unitscyglem5 42232 |
| Copyright terms: Public domain | W3C validator |