MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomringd Structured version   Visualization version   GIF version

Theorem idomringd 20652
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypothesis
Ref Expression
idomringd.1 (𝜑𝑅 ∈ IDomn)
Assertion
Ref Expression
idomringd (𝜑𝑅 ∈ Ring)

Proof of Theorem idomringd
StepHypRef Expression
1 idomringd.1 . . 3 (𝜑𝑅 ∈ IDomn)
21idomcringd 20651 . 2 (𝜑𝑅 ∈ CRing)
32crngringd 20172 1 (𝜑𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Ringcrg 20159  IDomncidom 20617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-cring 20162  df-idom 20620
This theorem is referenced by:  fracfld  33318  dvdsruasso  33394  dvdsruasso2  33395  unitpidl1  33433  mxidlirredi  33480  mxidlirred  33481  rsprprmprmidlb  33532  rprmasso  33534  rprmasso2  33535  unitmulrprm  33537  rprmirred  33540  rprmirredb  33541  1arithidomlem1  33544  1arithidomlem2  33545  1arithidom  33546  pidufd  33552  1arithufdlem2  33554  1arithufdlem4  33556  dfufd2lem  33558  dfufd2  33559  deg1prod  33592  r1pid2OLD  33618  vietadeg1  33662  vietalem  33663  vieta  33664  assafld  33722  fldextrspunlem1  33760  algextdeglem7  33808  idomnnzpownz  42298  deg1gprod  42306  deg1pow  42307  aks6d1c6lem3  42338  unitscyglem5  42365
  Copyright terms: Public domain W3C validator