| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20643 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | crngringd 20162 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20149 IDomncidom 20609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-cring 20152 df-idom 20612 |
| This theorem is referenced by: fracfld 33265 dvdsruasso 33363 dvdsruasso2 33364 unitpidl1 33402 mxidlirredi 33449 mxidlirred 33450 rsprprmprmidlb 33501 rprmasso 33503 rprmasso2 33504 unitmulrprm 33506 rprmirred 33509 rprmirredb 33510 1arithidomlem1 33513 1arithidomlem2 33514 1arithidom 33515 pidufd 33521 1arithufdlem2 33523 1arithufdlem4 33525 dfufd2lem 33527 dfufd2 33528 r1pid2OLD 33581 assafld 33640 fldextrspunlem1 33677 algextdeglem7 33720 idomnnzpownz 42127 deg1gprod 42135 deg1pow 42136 aks6d1c6lem3 42167 unitscyglem5 42194 |
| Copyright terms: Public domain | W3C validator |