| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idomringd | Structured version Visualization version GIF version | ||
| Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| Ref | Expression |
|---|---|
| idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 2 | 1 | idomcringd 20612 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | 2 | crngringd 20131 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Ringcrg 20118 IDomncidom 20578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-cring 20121 df-idom 20581 |
| This theorem is referenced by: fracfld 33231 dvdsruasso 33329 dvdsruasso2 33330 unitpidl1 33368 mxidlirredi 33415 mxidlirred 33416 rsprprmprmidlb 33467 rprmasso 33469 rprmasso2 33470 unitmulrprm 33472 rprmirred 33475 rprmirredb 33476 1arithidomlem1 33479 1arithidomlem2 33480 1arithidom 33481 pidufd 33487 1arithufdlem2 33489 1arithufdlem4 33491 dfufd2lem 33493 dfufd2 33494 r1pid2OLD 33547 assafld 33606 fldextrspunlem1 33643 algextdeglem7 33686 idomnnzpownz 42093 deg1gprod 42101 deg1pow 42102 aks6d1c6lem3 42133 unitscyglem5 42160 |
| Copyright terms: Public domain | W3C validator |