Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg3rt0irred Structured version   Visualization version   GIF version

Theorem ply1dg3rt0irred 33519
Description: If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg3rt0irred.z 0 = (0g𝐹)
ply1dg3rt0irred.o 𝑂 = (eval1𝐹)
ply1dg3rt0irred.d 𝐷 = (deg1𝐹)
ply1dg3rt0irred.p 𝑃 = (Poly1𝐹)
ply1dg3rt0irred.b 𝐵 = (Base‘𝑃)
ply1dg3rt0irred.f (𝜑𝐹 ∈ Field)
ply1dg3rt0irred.q (𝜑𝑄𝐵)
ply1dg3rt0irred.1 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
ply1dg3rt0irred.2 (𝜑 → (𝐷𝑄) = 3)
Assertion
Ref Expression
ply1dg3rt0irred (𝜑𝑄 ∈ (Irred‘𝑃))

Proof of Theorem ply1dg3rt0irred
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1dg3rt0irred.q . . 3 (𝜑𝑄𝐵)
2 ply1dg3rt0irred.2 . . . . 5 (𝜑 → (𝐷𝑄) = 3)
3 3ne0 12234 . . . . . 6 3 ≠ 0
43a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
52, 4eqnetrd 2992 . . . 4 (𝜑 → (𝐷𝑄) ≠ 0)
6 ply1dg3rt0irred.p . . . . . 6 𝑃 = (Poly1𝐹)
7 eqid 2729 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
8 eqid 2729 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
9 ply1dg3rt0irred.z . . . . . 6 0 = (0g𝐹)
10 ply1dg3rt0irred.f . . . . . 6 (𝜑𝐹 ∈ Field)
11 ply1dg3rt0irred.d . . . . . 6 𝐷 = (deg1𝐹)
12 ply1dg3rt0irred.b . . . . . . 7 𝐵 = (Base‘𝑃)
131, 12eleqtrdi 2838 . . . . . 6 (𝜑𝑄 ∈ (Base‘𝑃))
146, 7, 8, 9, 10, 11, 13ply1unit 33511 . . . . 5 (𝜑 → (𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) = 0))
1514necon3bbid 2962 . . . 4 (𝜑 → (¬ 𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) ≠ 0))
165, 15mpbird 257 . . 3 (𝜑 → ¬ 𝑄 ∈ (Unit‘𝑃))
171, 16eldifd 3914 . 2 (𝜑𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)))
1810ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Field)
19 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃)))
2019eldifad 3915 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝𝐵)
2120, 12eleqtrdi 2838 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (Base‘𝑃))
226, 7, 8, 9, 18, 11, 21ply1unit 33511 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ∈ (Unit‘𝑃) ↔ (𝐷𝑝) = 0))
2322biimpar 477 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → 𝑝 ∈ (Unit‘𝑃))
2419eldifbd 3916 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑝 ∈ (Unit‘𝑃))
2524adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ¬ 𝑝 ∈ (Unit‘𝑃))
2623, 25pm2.21fal 1562 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ⊥)
2726adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 0) → ⊥)
28 ply1dg3rt0irred.o . . . . . . . . . . . . . . 15 𝑂 = (eval1𝐹)
2910fldcrngd 20627 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ CRing)
3029ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ CRing)
31 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)))
3231eldifad 3915 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞𝐵)
33 eqid 2729 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
346, 12, 28, 11, 9, 30, 20, 32, 33ply1mulrtss 33518 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }))
35 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) = 𝑄)
3635fveq2d 6826 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3736cnveqd 5818 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3837imaeq1d 6010 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
3934, 38sseqtrd 3972 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂𝑄) “ { 0 }))
40 ply1dg3rt0irred.1 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
4140ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑄) “ { 0 }) = ∅)
4239, 41sseqtrd 3972 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ∅)
43 ss0 4353 . . . . . . . . . . . 12 (((𝑂𝑝) “ { 0 }) ⊆ ∅ → ((𝑂𝑝) “ { 0 }) = ∅)
4442, 43syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) = ∅)
4544adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) = ∅)
4618adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝐹 ∈ Field)
4720adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝑝𝐵)
48 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → (𝐷𝑝) = 1)
496, 12, 28, 11, 9, 46, 47, 48ply1dg1rtn0 33517 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) ≠ ∅)
5045, 49pm2.21ddne 3009 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ⊥)
5150adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 1) → ⊥)
52 elpri 4601 . . . . . . . . 9 ((𝐷𝑝) ∈ {0, 1} → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5352adantl 481 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5427, 51, 53mpjaodan 960 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ⊥)
556, 12, 28, 11, 9, 30, 32, 20, 33ply1mulrtss 33518 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }))
56 fldidom 20656 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ Field → 𝐹 ∈ IDomn)
5710, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ∈ IDomn)
586ply1idom 26028 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ IDomn → 𝑃 ∈ IDomn)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ IDomn)
6059idomcringd 20612 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ CRing)
6160ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ CRing)
6212, 33, 61, 32, 20crngcomd 20140 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = (𝑝(.r𝑃)𝑞))
6362, 35eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = 𝑄)
6463fveq2d 6826 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6564cnveqd 5818 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6665imaeq1d 6010 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
6766, 41eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ∅)
6855, 67sseqtrd 3972 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ∅)
69 ss0 4353 . . . . . . . . . . . 12 (((𝑂𝑞) “ { 0 }) ⊆ ∅ → ((𝑂𝑞) “ { 0 }) = ∅)
7068, 69syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) = ∅)
7170adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) = ∅)
7218adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝐹 ∈ Field)
7332adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝑞𝐵)
7429crngringd 20131 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Ring)
7574ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Ring)
76 eqid 2729 . . . . . . . . . . . . . . . . . 18 (0g𝑃) = (0g𝑃)
7759idomdomd 20611 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ Domn)
79 3nn0 12402 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
802, 79eqeltrdi 2836 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷𝑄) ∈ ℕ0)
8111, 6, 76, 12deg1nn0clb 25993 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Ring ∧ 𝑄𝐵) → (𝑄 ≠ (0g𝑃) ↔ (𝐷𝑄) ∈ ℕ0))
8281biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ Ring ∧ 𝑄𝐵) ∧ (𝐷𝑄) ∈ ℕ0) → 𝑄 ≠ (0g𝑃))
8374, 1, 80, 82syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ≠ (0g𝑃))
8483ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑄 ≠ (0g𝑃))
8535, 84eqnetrd 2992 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) ≠ (0g𝑃))
8612, 33, 76, 78, 20, 32, 85domnmuln0rd 33215 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ≠ (0g𝑃) ∧ 𝑞 ≠ (0g𝑃)))
8786simpld 494 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ≠ (0g𝑃))
8811, 6, 76, 12deg1nn0cl 25991 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑝𝐵𝑝 ≠ (0g𝑃)) → (𝐷𝑝) ∈ ℕ0)
8975, 20, 87, 88syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℕ0)
9089nn0cnd 12447 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℂ)
9186simprd 495 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ≠ (0g𝑃))
9211, 6, 76, 12deg1nn0cl 25991 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞𝐵𝑞 ≠ (0g𝑃)) → (𝐷𝑞) ∈ ℕ0)
9375, 32, 91, 92syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℕ0)
9493nn0cnd 12447 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℂ)
9535fveq2d 6826 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = (𝐷𝑄))
9657idomdomd 20611 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Domn)
9796ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Domn)
9811, 6, 12, 33, 76, 97, 20, 87, 32, 91deg1mul 26018 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = ((𝐷𝑝) + (𝐷𝑞)))
992ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑄) = 3)
10095, 98, 993eqtr3d 2772 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) + (𝐷𝑞)) = 3)
10190, 94, 100mvlladdd 11531 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) = (3 − (𝐷𝑝)))
102101adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = (3 − (𝐷𝑝)))
103 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑝) = 2)
104103oveq2d 7365 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − (𝐷𝑝)) = (3 − 2))
105 3cn 12209 . . . . . . . . . . . . . 14 3 ∈ ℂ
106 2cn 12203 . . . . . . . . . . . . . 14 2 ∈ ℂ
107 ax-1cn 11067 . . . . . . . . . . . . . 14 1 ∈ ℂ
108 2p1e3 12265 . . . . . . . . . . . . . 14 (2 + 1) = 3
109105, 106, 107, 108subaddrii 11453 . . . . . . . . . . . . 13 (3 − 2) = 1
110109a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − 2) = 1)
111102, 104, 1103eqtrd 2768 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = 1)
1126, 12, 28, 11, 9, 72, 73, 111ply1dg1rtn0 33517 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) ≠ ∅)
11371, 112pm2.21ddne 3009 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ⊥)
114113adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 2) → ⊥)
115101adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = (3 − (𝐷𝑝)))
116 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑝) = 3)
117116oveq2d 7365 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − (𝐷𝑝)) = (3 − 3))
118105subidi 11435 . . . . . . . . . . . . 13 (3 − 3) = 0
119118a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − 3) = 0)
120115, 117, 1193eqtrd 2768 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = 0)
12118adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝐹 ∈ Field)
12232, 12eleqtrdi 2838 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (Base‘𝑃))
123122adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Base‘𝑃))
1246, 7, 8, 9, 121, 11, 123ply1unit 33511 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝑞 ∈ (Unit‘𝑃) ↔ (𝐷𝑞) = 0))
125120, 124mpbird 257 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Unit‘𝑃))
12631eldifbd 3916 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑞 ∈ (Unit‘𝑃))
127126adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ¬ 𝑞 ∈ (Unit‘𝑃))
128125, 127pm2.21fal 1562 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ⊥)
129128adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 3) → ⊥)
130 elpri 4601 . . . . . . . . 9 ((𝐷𝑝) ∈ {2, 3} → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
131130adantl 481 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
132114, 129, 131mpjaodan 960 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ⊥)
13379a1i 11 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 3 ∈ ℕ0)
13489nn0red 12446 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℝ)
135 nn0addge1 12430 . . . . . . . . . . . 12 (((𝐷𝑝) ∈ ℝ ∧ (𝐷𝑞) ∈ ℕ0) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
136134, 93, 135syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
137136, 100breqtrd 5118 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ 3)
138 fznn0 13522 . . . . . . . . . . 11 (3 ∈ ℕ0 → ((𝐷𝑝) ∈ (0...3) ↔ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)))
139138biimpar 477 . . . . . . . . . 10 ((3 ∈ ℕ0 ∧ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)) → (𝐷𝑝) ∈ (0...3))
140133, 89, 137, 139syl12anc 836 . . . . . . . . 9 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ (0...3))
141 fz0to3un2pr 13532 . . . . . . . . 9 (0...3) = ({0, 1} ∪ {2, 3})
142140, 141eleqtrdi 2838 . . . . . . . 8 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}))
143 elun 4104 . . . . . . . 8 ((𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}) ↔ ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
144142, 143sylib 218 . . . . . . 7 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
14554, 132, 144mpjaodan 960 . . . . . 6 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
146145r19.29ffa 32415 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
147146inegd 1560 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
148 ralnex2 3109 . . . 4 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄 ↔ ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
149147, 148sylibr 234 . . 3 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
150 df-ne 2926 . . . 4 ((𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
1511502ralbii 3104 . . 3 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
152149, 151sylibr 234 . 2 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄)
153 eqid 2729 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
154 eqid 2729 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
155 eqid 2729 . . 3 (𝐵 ∖ (Unit‘𝑃)) = (𝐵 ∖ (Unit‘𝑃))
15612, 153, 154, 155, 33isirred 20304 . 2 (𝑄 ∈ (Irred‘𝑃) ↔ (𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)) ∧ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄))
15717, 152, 156sylanbrc 583 1 (𝜑𝑄 ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wfal 1552  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  cun 3901  wss 3903  c0 4284  {csn 4577  {cpr 4579   class class class wbr 5092  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  cle 11150  cmin 11347  2c2 12183  3c3 12184  0cn0 12384  ...cfz 13410  Basecbs 17120  .rcmulr 17162  0gc0g 17343  Ringcrg 20118  CRingccrg 20119  Unitcui 20240  Irredcir 20241  Domncdomn 20577  IDomncidom 20578  Fieldcfield 20615  algSccascl 21759  Poly1cpl1 22059  eval1ce1 22199  deg1cdg1 25957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evls1 22200  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034
This theorem is referenced by:  2sqr3minply  33753  cos9thpiminply  33761
  Copyright terms: Public domain W3C validator