Step | Hyp | Ref
| Expression |
1 | | ply1dg3rt0irred.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ 𝐵) |
2 | | ply1dg3rt0irred.2 |
. . . . 5
⊢ (𝜑 → (𝐷‘𝑄) = 3) |
3 | | 3ne0 12363 |
. . . . . 6
⊢ 3 ≠
0 |
4 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → 3 ≠ 0) |
5 | 2, 4 | eqnetrd 2998 |
. . . 4
⊢ (𝜑 → (𝐷‘𝑄) ≠ 0) |
6 | | ply1dg3rt0irred.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝐹) |
7 | | eqid 2726 |
. . . . . 6
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
8 | | eqid 2726 |
. . . . . 6
⊢
(Base‘𝐹) =
(Base‘𝐹) |
9 | | ply1dg3rt0irred.z |
. . . . . 6
⊢ 0 =
(0g‘𝐹) |
10 | | ply1dg3rt0irred.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ Field) |
11 | | ply1dg3rt0irred.d |
. . . . . 6
⊢ 𝐷 = (deg1‘𝐹) |
12 | | ply1dg3rt0irred.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑃) |
13 | 1, 12 | eleqtrdi 2836 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (Base‘𝑃)) |
14 | 6, 7, 8, 9, 10, 11, 13 | ply1unit 33452 |
. . . . 5
⊢ (𝜑 → (𝑄 ∈ (Unit‘𝑃) ↔ (𝐷‘𝑄) = 0)) |
15 | 14 | necon3bbid 2968 |
. . . 4
⊢ (𝜑 → (¬ 𝑄 ∈ (Unit‘𝑃) ↔ (𝐷‘𝑄) ≠ 0)) |
16 | 5, 15 | mpbird 256 |
. . 3
⊢ (𝜑 → ¬ 𝑄 ∈ (Unit‘𝑃)) |
17 | 1, 16 | eldifd 3959 |
. 2
⊢ (𝜑 → 𝑄 ∈ (𝐵 ∖ (Unit‘𝑃))) |
18 | 10 | ad3antrrr 728 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝐹 ∈ Field) |
19 | | simpllr 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) |
20 | 19 | eldifad 3960 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑝 ∈ 𝐵) |
21 | 20, 12 | eleqtrdi 2836 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑝 ∈ (Base‘𝑃)) |
22 | 6, 7, 8, 9, 18, 11, 21 | ply1unit 33452 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑝 ∈ (Unit‘𝑃) ↔ (𝐷‘𝑝) = 0)) |
23 | 22 | biimpar 476 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 0) → 𝑝 ∈ (Unit‘𝑃)) |
24 | 19 | eldifbd 3961 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → ¬ 𝑝 ∈ (Unit‘𝑃)) |
25 | 24 | adantr 479 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 0) → ¬ 𝑝 ∈ (Unit‘𝑃)) |
26 | 23, 25 | pm2.21fal 1556 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 0) → ⊥) |
27 | 26 | adantlr 713 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {0, 1}) ∧ (𝐷‘𝑝) = 0) → ⊥) |
28 | | ply1dg3rt0irred.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (eval1‘𝐹) |
29 | 10 | fldcrngd 20715 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 ∈ CRing) |
30 | 29 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝐹 ∈ CRing) |
31 | | simplr 767 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) |
32 | 31 | eldifad 3960 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑞 ∈ 𝐵) |
33 | | eqid 2726 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) = (.r‘𝑃) |
34 | 6, 12, 28, 11, 9, 30, 20, 32, 33 | ply1mulrtss 33458 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑝) “ { 0 }) ⊆ (◡(𝑂‘(𝑝(.r‘𝑃)𝑞)) “ { 0 })) |
35 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑝(.r‘𝑃)𝑞) = 𝑄) |
36 | 35 | fveq2d 6896 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r‘𝑃)𝑞)) = (𝑂‘𝑄)) |
37 | 36 | cnveqd 5874 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → ◡(𝑂‘(𝑝(.r‘𝑃)𝑞)) = ◡(𝑂‘𝑄)) |
38 | 37 | imaeq1d 6060 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘(𝑝(.r‘𝑃)𝑞)) “ { 0 }) = (◡(𝑂‘𝑄) “ { 0 })) |
39 | 34, 38 | sseqtrd 4021 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑝) “ { 0 }) ⊆ (◡(𝑂‘𝑄) “ { 0 })) |
40 | | ply1dg3rt0irred.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡(𝑂‘𝑄) “ { 0 }) =
∅) |
41 | 40 | ad3antrrr 728 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑄) “ { 0 }) =
∅) |
42 | 39, 41 | sseqtrd 4021 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑝) “ { 0 }) ⊆
∅) |
43 | | ss0 4398 |
. . . . . . . . . . . 12
⊢ ((◡(𝑂‘𝑝) “ { 0 }) ⊆ ∅ →
(◡(𝑂‘𝑝) “ { 0 }) =
∅) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑝) “ { 0 }) =
∅) |
45 | 44 | adantr 479 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 1) → (◡(𝑂‘𝑝) “ { 0 }) =
∅) |
46 | 18 | adantr 479 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 1) → 𝐹 ∈ Field) |
47 | 20 | adantr 479 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 1) → 𝑝 ∈ 𝐵) |
48 | | simpr 483 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 1) → (𝐷‘𝑝) = 1) |
49 | 6, 12, 28, 11, 9, 46, 47, 48 | ply1dg1rtn0 33457 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 1) → (◡(𝑂‘𝑝) “ { 0 }) ≠
∅) |
50 | 45, 49 | pm2.21ddne 3016 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 1) → ⊥) |
51 | 50 | adantlr 713 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {0, 1}) ∧ (𝐷‘𝑝) = 1) → ⊥) |
52 | | elpri 4648 |
. . . . . . . . 9
⊢ ((𝐷‘𝑝) ∈ {0, 1} → ((𝐷‘𝑝) = 0 ∨ (𝐷‘𝑝) = 1)) |
53 | 52 | adantl 480 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {0, 1}) → ((𝐷‘𝑝) = 0 ∨ (𝐷‘𝑝) = 1)) |
54 | 27, 51, 53 | mpjaodan 956 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {0, 1}) →
⊥) |
55 | 6, 12, 28, 11, 9, 30, 32, 20, 33 | ply1mulrtss 33458 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑞) “ { 0 }) ⊆ (◡(𝑂‘(𝑞(.r‘𝑃)𝑝)) “ { 0 })) |
56 | | fldidom 20744 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ Field → 𝐹 ∈ IDomn) |
57 | 10, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹 ∈ IDomn) |
58 | 6 | ply1idom 26148 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ IDomn → 𝑃 ∈ IDomn) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑃 ∈ IDomn) |
60 | 59 | idomcringd 20700 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑃 ∈ CRing) |
61 | 60 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑃 ∈ CRing) |
62 | 12, 33, 61, 32, 20 | crngcomd 20233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑞(.r‘𝑃)𝑝) = (𝑝(.r‘𝑃)𝑞)) |
63 | 62, 35 | eqtrd 2766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑞(.r‘𝑃)𝑝) = 𝑄) |
64 | 63 | fveq2d 6896 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r‘𝑃)𝑝)) = (𝑂‘𝑄)) |
65 | 64 | cnveqd 5874 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → ◡(𝑂‘(𝑞(.r‘𝑃)𝑝)) = ◡(𝑂‘𝑄)) |
66 | 65 | imaeq1d 6060 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘(𝑞(.r‘𝑃)𝑝)) “ { 0 }) = (◡(𝑂‘𝑄) “ { 0 })) |
67 | 66, 41 | eqtrd 2766 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘(𝑞(.r‘𝑃)𝑝)) “ { 0 }) =
∅) |
68 | 55, 67 | sseqtrd 4021 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑞) “ { 0 }) ⊆
∅) |
69 | | ss0 4398 |
. . . . . . . . . . . 12
⊢ ((◡(𝑂‘𝑞) “ { 0 }) ⊆ ∅ →
(◡(𝑂‘𝑞) “ { 0 }) =
∅) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (◡(𝑂‘𝑞) “ { 0 }) =
∅) |
71 | 70 | adantr 479 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → (◡(𝑂‘𝑞) “ { 0 }) =
∅) |
72 | 18 | adantr 479 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → 𝐹 ∈ Field) |
73 | 32 | adantr 479 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → 𝑞 ∈ 𝐵) |
74 | 29 | crngringd 20224 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ Ring) |
75 | 74 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝐹 ∈ Ring) |
76 | | eqid 2726 |
. . . . . . . . . . . . . . . . . 18
⊢
(0g‘𝑃) = (0g‘𝑃) |
77 | 59 | idomdomd 20699 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ Domn) |
78 | 77 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑃 ∈ Domn) |
79 | | 3nn0 12535 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 3 ∈
ℕ0 |
80 | 2, 79 | eqeltrdi 2834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐷‘𝑄) ∈
ℕ0) |
81 | 11, 6, 76, 12 | deg1nn0clb 26113 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ Ring ∧ 𝑄 ∈ 𝐵) → (𝑄 ≠ (0g‘𝑃) ↔ (𝐷‘𝑄) ∈
ℕ0)) |
82 | 81 | biimpar 476 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ Ring ∧ 𝑄 ∈ 𝐵) ∧ (𝐷‘𝑄) ∈ ℕ0) → 𝑄 ≠ (0g‘𝑃)) |
83 | 74, 1, 80, 82 | syl21anc 836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑄 ≠ (0g‘𝑃)) |
84 | 83 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑄 ≠ (0g‘𝑃)) |
85 | 35, 84 | eqnetrd 2998 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑝(.r‘𝑃)𝑞) ≠ (0g‘𝑃)) |
86 | 12, 33, 76, 78, 20, 32, 85 | domnmuln0rd 33133 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝑝 ≠ (0g‘𝑃) ∧ 𝑞 ≠ (0g‘𝑃))) |
87 | 86 | simpld 493 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑝 ≠ (0g‘𝑃)) |
88 | 11, 6, 76, 12 | deg1nn0cl 26111 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑝 ≠ (0g‘𝑃)) → (𝐷‘𝑝) ∈
ℕ0) |
89 | 75, 20, 87, 88 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑝) ∈
ℕ0) |
90 | 89 | nn0cnd 12579 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑝) ∈ ℂ) |
91 | 86 | simprd 494 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑞 ≠ (0g‘𝑃)) |
92 | 11, 6, 76, 12 | deg1nn0cl 26111 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Ring ∧ 𝑞 ∈ 𝐵 ∧ 𝑞 ≠ (0g‘𝑃)) → (𝐷‘𝑞) ∈
ℕ0) |
93 | 75, 32, 91, 92 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑞) ∈
ℕ0) |
94 | 93 | nn0cnd 12579 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑞) ∈ ℂ) |
95 | 35 | fveq2d 6896 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r‘𝑃)𝑞)) = (𝐷‘𝑄)) |
96 | 57 | idomdomd 20699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ Domn) |
97 | 96 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝐹 ∈ Domn) |
98 | 11, 6, 12, 33, 76, 97, 20, 87, 32, 91 | deg1mul 26138 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r‘𝑃)𝑞)) = ((𝐷‘𝑝) + (𝐷‘𝑞))) |
99 | 2 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑄) = 3) |
100 | 95, 98, 99 | 3eqtr3d 2774 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → ((𝐷‘𝑝) + (𝐷‘𝑞)) = 3) |
101 | 90, 94, 100 | mvlladdd 11665 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑞) = (3 − (𝐷‘𝑝))) |
102 | 101 | adantr 479 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → (𝐷‘𝑞) = (3 − (𝐷‘𝑝))) |
103 | | simpr 483 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → (𝐷‘𝑝) = 2) |
104 | 103 | oveq2d 7431 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → (3 − (𝐷‘𝑝)) = (3 − 2)) |
105 | | 3cn 12338 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℂ |
106 | | 2cn 12332 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
107 | | ax-1cn 11206 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
108 | | 2p1e3 12399 |
. . . . . . . . . . . . . 14
⊢ (2 + 1) =
3 |
109 | 105, 106,
107, 108 | subaddrii 11589 |
. . . . . . . . . . . . 13
⊢ (3
− 2) = 1 |
110 | 109 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → (3 − 2) =
1) |
111 | 102, 104,
110 | 3eqtrd 2770 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → (𝐷‘𝑞) = 1) |
112 | 6, 12, 28, 11, 9, 72, 73, 111 | ply1dg1rtn0 33457 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → (◡(𝑂‘𝑞) “ { 0 }) ≠
∅) |
113 | 71, 112 | pm2.21ddne 3016 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 2) → ⊥) |
114 | 113 | adantlr 713 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {2, 3}) ∧ (𝐷‘𝑝) = 2) → ⊥) |
115 | 101 | adantr 479 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → (𝐷‘𝑞) = (3 − (𝐷‘𝑝))) |
116 | | simpr 483 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → (𝐷‘𝑝) = 3) |
117 | 116 | oveq2d 7431 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → (3 − (𝐷‘𝑝)) = (3 − 3)) |
118 | 105 | subidi 11571 |
. . . . . . . . . . . . 13
⊢ (3
− 3) = 0 |
119 | 118 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → (3 − 3) =
0) |
120 | 115, 117,
119 | 3eqtrd 2770 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → (𝐷‘𝑞) = 0) |
121 | 18 | adantr 479 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → 𝐹 ∈ Field) |
122 | 32, 12 | eleqtrdi 2836 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 𝑞 ∈ (Base‘𝑃)) |
123 | 122 | adantr 479 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → 𝑞 ∈ (Base‘𝑃)) |
124 | 6, 7, 8, 9, 121, 11, 123 | ply1unit 33452 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → (𝑞 ∈ (Unit‘𝑃) ↔ (𝐷‘𝑞) = 0)) |
125 | 120, 124 | mpbird 256 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → 𝑞 ∈ (Unit‘𝑃)) |
126 | 31 | eldifbd 3961 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → ¬ 𝑞 ∈ (Unit‘𝑃)) |
127 | 126 | adantr 479 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → ¬ 𝑞 ∈ (Unit‘𝑃)) |
128 | 125, 127 | pm2.21fal 1556 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) = 3) → ⊥) |
129 | 128 | adantlr 713 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {2, 3}) ∧ (𝐷‘𝑝) = 3) → ⊥) |
130 | | elpri 4648 |
. . . . . . . . 9
⊢ ((𝐷‘𝑝) ∈ {2, 3} → ((𝐷‘𝑝) = 2 ∨ (𝐷‘𝑝) = 3)) |
131 | 130 | adantl 480 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {2, 3}) → ((𝐷‘𝑝) = 2 ∨ (𝐷‘𝑝) = 3)) |
132 | 114, 129,
131 | mpjaodan 956 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) ∧ (𝐷‘𝑝) ∈ {2, 3}) →
⊥) |
133 | 79 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → 3 ∈
ℕ0) |
134 | 89 | nn0red 12578 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑝) ∈ ℝ) |
135 | | nn0addge1 12563 |
. . . . . . . . . . . 12
⊢ (((𝐷‘𝑝) ∈ ℝ ∧ (𝐷‘𝑞) ∈ ℕ0) → (𝐷‘𝑝) ≤ ((𝐷‘𝑝) + (𝐷‘𝑞))) |
136 | 134, 93, 135 | syl2anc 582 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑝) ≤ ((𝐷‘𝑝) + (𝐷‘𝑞))) |
137 | 136, 100 | breqtrd 5171 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑝) ≤ 3) |
138 | | fznn0 13640 |
. . . . . . . . . . 11
⊢ (3 ∈
ℕ0 → ((𝐷‘𝑝) ∈ (0...3) ↔ ((𝐷‘𝑝) ∈ ℕ0 ∧ (𝐷‘𝑝) ≤ 3))) |
139 | 138 | biimpar 476 |
. . . . . . . . . 10
⊢ ((3
∈ ℕ0 ∧ ((𝐷‘𝑝) ∈ ℕ0 ∧ (𝐷‘𝑝) ≤ 3)) → (𝐷‘𝑝) ∈ (0...3)) |
140 | 133, 89, 137, 139 | syl12anc 835 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑝) ∈ (0...3)) |
141 | | fz0to3un2pr 13650 |
. . . . . . . . 9
⊢ (0...3) =
({0, 1} ∪ {2, 3}) |
142 | 140, 141 | eleqtrdi 2836 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → (𝐷‘𝑝) ∈ ({0, 1} ∪ {2,
3})) |
143 | | elun 4147 |
. . . . . . . 8
⊢ ((𝐷‘𝑝) ∈ ({0, 1} ∪ {2, 3}) ↔ ((𝐷‘𝑝) ∈ {0, 1} ∨ (𝐷‘𝑝) ∈ {2, 3})) |
144 | 142, 143 | sylib 217 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → ((𝐷‘𝑝) ∈ {0, 1} ∨ (𝐷‘𝑝) ∈ {2, 3})) |
145 | 54, 132, 144 | mpjaodan 956 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r‘𝑃)𝑞) = 𝑄) → ⊥) |
146 | 145 | r19.29ffa 32397 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r‘𝑃)𝑞) = 𝑄) → ⊥) |
147 | 146 | inegd 1554 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r‘𝑃)𝑞) = 𝑄) |
148 | | ralnex2 3123 |
. . . 4
⊢
(∀𝑝 ∈
(𝐵 ∖
(Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r‘𝑃)𝑞) = 𝑄 ↔ ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r‘𝑃)𝑞) = 𝑄) |
149 | 147, 148 | sylibr 233 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r‘𝑃)𝑞) = 𝑄) |
150 | | df-ne 2931 |
. . . 4
⊢ ((𝑝(.r‘𝑃)𝑞) ≠ 𝑄 ↔ ¬ (𝑝(.r‘𝑃)𝑞) = 𝑄) |
151 | 150 | 2ralbii 3118 |
. . 3
⊢
(∀𝑝 ∈
(𝐵 ∖
(Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r‘𝑃)𝑞) ≠ 𝑄 ↔ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r‘𝑃)𝑞) = 𝑄) |
152 | 149, 151 | sylibr 233 |
. 2
⊢ (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r‘𝑃)𝑞) ≠ 𝑄) |
153 | | eqid 2726 |
. . 3
⊢
(Unit‘𝑃) =
(Unit‘𝑃) |
154 | | eqid 2726 |
. . 3
⊢
(Irred‘𝑃) =
(Irred‘𝑃) |
155 | | eqid 2726 |
. . 3
⊢ (𝐵 ∖ (Unit‘𝑃)) = (𝐵 ∖ (Unit‘𝑃)) |
156 | 12, 153, 154, 155, 33 | isirred 20396 |
. 2
⊢ (𝑄 ∈ (Irred‘𝑃) ↔ (𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)) ∧ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r‘𝑃)𝑞) ≠ 𝑄)) |
157 | 17, 152, 156 | sylanbrc 581 |
1
⊢ (𝜑 → 𝑄 ∈ (Irred‘𝑃)) |