Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg3rt0irred Structured version   Visualization version   GIF version

Theorem ply1dg3rt0irred 33607
Description: If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg3rt0irred.z 0 = (0g𝐹)
ply1dg3rt0irred.o 𝑂 = (eval1𝐹)
ply1dg3rt0irred.d 𝐷 = (deg1𝐹)
ply1dg3rt0irred.p 𝑃 = (Poly1𝐹)
ply1dg3rt0irred.b 𝐵 = (Base‘𝑃)
ply1dg3rt0irred.f (𝜑𝐹 ∈ Field)
ply1dg3rt0irred.q (𝜑𝑄𝐵)
ply1dg3rt0irred.1 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
ply1dg3rt0irred.2 (𝜑 → (𝐷𝑄) = 3)
Assertion
Ref Expression
ply1dg3rt0irred (𝜑𝑄 ∈ (Irred‘𝑃))

Proof of Theorem ply1dg3rt0irred
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1dg3rt0irred.q . . 3 (𝜑𝑄𝐵)
2 ply1dg3rt0irred.2 . . . . 5 (𝜑 → (𝐷𝑄) = 3)
3 3ne0 12372 . . . . . 6 3 ≠ 0
43a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
52, 4eqnetrd 3008 . . . 4 (𝜑 → (𝐷𝑄) ≠ 0)
6 ply1dg3rt0irred.p . . . . . 6 𝑃 = (Poly1𝐹)
7 eqid 2737 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
8 eqid 2737 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
9 ply1dg3rt0irred.z . . . . . 6 0 = (0g𝐹)
10 ply1dg3rt0irred.f . . . . . 6 (𝜑𝐹 ∈ Field)
11 ply1dg3rt0irred.d . . . . . 6 𝐷 = (deg1𝐹)
12 ply1dg3rt0irred.b . . . . . . 7 𝐵 = (Base‘𝑃)
131, 12eleqtrdi 2851 . . . . . 6 (𝜑𝑄 ∈ (Base‘𝑃))
146, 7, 8, 9, 10, 11, 13ply1unit 33600 . . . . 5 (𝜑 → (𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) = 0))
1514necon3bbid 2978 . . . 4 (𝜑 → (¬ 𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) ≠ 0))
165, 15mpbird 257 . . 3 (𝜑 → ¬ 𝑄 ∈ (Unit‘𝑃))
171, 16eldifd 3962 . 2 (𝜑𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)))
1810ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Field)
19 simpllr 776 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃)))
2019eldifad 3963 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝𝐵)
2120, 12eleqtrdi 2851 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (Base‘𝑃))
226, 7, 8, 9, 18, 11, 21ply1unit 33600 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ∈ (Unit‘𝑃) ↔ (𝐷𝑝) = 0))
2322biimpar 477 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → 𝑝 ∈ (Unit‘𝑃))
2419eldifbd 3964 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑝 ∈ (Unit‘𝑃))
2524adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ¬ 𝑝 ∈ (Unit‘𝑃))
2623, 25pm2.21fal 1562 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ⊥)
2726adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 0) → ⊥)
28 ply1dg3rt0irred.o . . . . . . . . . . . . . . 15 𝑂 = (eval1𝐹)
2910fldcrngd 20742 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ CRing)
3029ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ CRing)
31 simplr 769 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)))
3231eldifad 3963 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞𝐵)
33 eqid 2737 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
346, 12, 28, 11, 9, 30, 20, 32, 33ply1mulrtss 33606 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }))
35 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) = 𝑄)
3635fveq2d 6910 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3736cnveqd 5886 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3837imaeq1d 6077 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
3934, 38sseqtrd 4020 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂𝑄) “ { 0 }))
40 ply1dg3rt0irred.1 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
4140ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑄) “ { 0 }) = ∅)
4239, 41sseqtrd 4020 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ∅)
43 ss0 4402 . . . . . . . . . . . 12 (((𝑂𝑝) “ { 0 }) ⊆ ∅ → ((𝑂𝑝) “ { 0 }) = ∅)
4442, 43syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) = ∅)
4544adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) = ∅)
4618adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝐹 ∈ Field)
4720adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝑝𝐵)
48 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → (𝐷𝑝) = 1)
496, 12, 28, 11, 9, 46, 47, 48ply1dg1rtn0 33605 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) ≠ ∅)
5045, 49pm2.21ddne 3026 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ⊥)
5150adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 1) → ⊥)
52 elpri 4649 . . . . . . . . 9 ((𝐷𝑝) ∈ {0, 1} → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5352adantl 481 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5427, 51, 53mpjaodan 961 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ⊥)
556, 12, 28, 11, 9, 30, 32, 20, 33ply1mulrtss 33606 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }))
56 fldidom 20771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ Field → 𝐹 ∈ IDomn)
5710, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ∈ IDomn)
586ply1idom 26164 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ IDomn → 𝑃 ∈ IDomn)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ IDomn)
6059idomcringd 20727 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ CRing)
6160ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ CRing)
6212, 33, 61, 32, 20crngcomd 20252 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = (𝑝(.r𝑃)𝑞))
6362, 35eqtrd 2777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = 𝑄)
6463fveq2d 6910 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6564cnveqd 5886 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6665imaeq1d 6077 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
6766, 41eqtrd 2777 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ∅)
6855, 67sseqtrd 4020 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ∅)
69 ss0 4402 . . . . . . . . . . . 12 (((𝑂𝑞) “ { 0 }) ⊆ ∅ → ((𝑂𝑞) “ { 0 }) = ∅)
7068, 69syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) = ∅)
7170adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) = ∅)
7218adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝐹 ∈ Field)
7332adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝑞𝐵)
7429crngringd 20243 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Ring)
7574ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Ring)
76 eqid 2737 . . . . . . . . . . . . . . . . . 18 (0g𝑃) = (0g𝑃)
7759idomdomd 20726 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ Domn)
79 3nn0 12544 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
802, 79eqeltrdi 2849 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷𝑄) ∈ ℕ0)
8111, 6, 76, 12deg1nn0clb 26129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Ring ∧ 𝑄𝐵) → (𝑄 ≠ (0g𝑃) ↔ (𝐷𝑄) ∈ ℕ0))
8281biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ Ring ∧ 𝑄𝐵) ∧ (𝐷𝑄) ∈ ℕ0) → 𝑄 ≠ (0g𝑃))
8374, 1, 80, 82syl21anc 838 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ≠ (0g𝑃))
8483ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑄 ≠ (0g𝑃))
8535, 84eqnetrd 3008 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) ≠ (0g𝑃))
8612, 33, 76, 78, 20, 32, 85domnmuln0rd 33278 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ≠ (0g𝑃) ∧ 𝑞 ≠ (0g𝑃)))
8786simpld 494 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ≠ (0g𝑃))
8811, 6, 76, 12deg1nn0cl 26127 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑝𝐵𝑝 ≠ (0g𝑃)) → (𝐷𝑝) ∈ ℕ0)
8975, 20, 87, 88syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℕ0)
9089nn0cnd 12589 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℂ)
9186simprd 495 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ≠ (0g𝑃))
9211, 6, 76, 12deg1nn0cl 26127 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞𝐵𝑞 ≠ (0g𝑃)) → (𝐷𝑞) ∈ ℕ0)
9375, 32, 91, 92syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℕ0)
9493nn0cnd 12589 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℂ)
9535fveq2d 6910 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = (𝐷𝑄))
9657idomdomd 20726 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Domn)
9796ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Domn)
9811, 6, 12, 33, 76, 97, 20, 87, 32, 91deg1mul 26154 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = ((𝐷𝑝) + (𝐷𝑞)))
992ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑄) = 3)
10095, 98, 993eqtr3d 2785 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) + (𝐷𝑞)) = 3)
10190, 94, 100mvlladdd 11674 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) = (3 − (𝐷𝑝)))
102101adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = (3 − (𝐷𝑝)))
103 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑝) = 2)
104103oveq2d 7447 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − (𝐷𝑝)) = (3 − 2))
105 3cn 12347 . . . . . . . . . . . . . 14 3 ∈ ℂ
106 2cn 12341 . . . . . . . . . . . . . 14 2 ∈ ℂ
107 ax-1cn 11213 . . . . . . . . . . . . . 14 1 ∈ ℂ
108 2p1e3 12408 . . . . . . . . . . . . . 14 (2 + 1) = 3
109105, 106, 107, 108subaddrii 11598 . . . . . . . . . . . . 13 (3 − 2) = 1
110109a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − 2) = 1)
111102, 104, 1103eqtrd 2781 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = 1)
1126, 12, 28, 11, 9, 72, 73, 111ply1dg1rtn0 33605 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) ≠ ∅)
11371, 112pm2.21ddne 3026 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ⊥)
114113adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 2) → ⊥)
115101adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = (3 − (𝐷𝑝)))
116 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑝) = 3)
117116oveq2d 7447 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − (𝐷𝑝)) = (3 − 3))
118105subidi 11580 . . . . . . . . . . . . 13 (3 − 3) = 0
119118a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − 3) = 0)
120115, 117, 1193eqtrd 2781 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = 0)
12118adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝐹 ∈ Field)
12232, 12eleqtrdi 2851 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (Base‘𝑃))
123122adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Base‘𝑃))
1246, 7, 8, 9, 121, 11, 123ply1unit 33600 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝑞 ∈ (Unit‘𝑃) ↔ (𝐷𝑞) = 0))
125120, 124mpbird 257 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Unit‘𝑃))
12631eldifbd 3964 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑞 ∈ (Unit‘𝑃))
127126adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ¬ 𝑞 ∈ (Unit‘𝑃))
128125, 127pm2.21fal 1562 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ⊥)
129128adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 3) → ⊥)
130 elpri 4649 . . . . . . . . 9 ((𝐷𝑝) ∈ {2, 3} → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
131130adantl 481 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
132114, 129, 131mpjaodan 961 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ⊥)
13379a1i 11 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 3 ∈ ℕ0)
13489nn0red 12588 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℝ)
135 nn0addge1 12572 . . . . . . . . . . . 12 (((𝐷𝑝) ∈ ℝ ∧ (𝐷𝑞) ∈ ℕ0) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
136134, 93, 135syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
137136, 100breqtrd 5169 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ 3)
138 fznn0 13659 . . . . . . . . . . 11 (3 ∈ ℕ0 → ((𝐷𝑝) ∈ (0...3) ↔ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)))
139138biimpar 477 . . . . . . . . . 10 ((3 ∈ ℕ0 ∧ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)) → (𝐷𝑝) ∈ (0...3))
140133, 89, 137, 139syl12anc 837 . . . . . . . . 9 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ (0...3))
141 fz0to3un2pr 13669 . . . . . . . . 9 (0...3) = ({0, 1} ∪ {2, 3})
142140, 141eleqtrdi 2851 . . . . . . . 8 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}))
143 elun 4153 . . . . . . . 8 ((𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}) ↔ ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
144142, 143sylib 218 . . . . . . 7 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
14554, 132, 144mpjaodan 961 . . . . . 6 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
146145r19.29ffa 32490 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
147146inegd 1560 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
148 ralnex2 3133 . . . 4 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄 ↔ ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
149147, 148sylibr 234 . . 3 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
150 df-ne 2941 . . . 4 ((𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
1511502ralbii 3128 . . 3 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
152149, 151sylibr 234 . 2 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄)
153 eqid 2737 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
154 eqid 2737 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
155 eqid 2737 . . 3 (𝐵 ∖ (Unit‘𝑃)) = (𝐵 ∖ (Unit‘𝑃))
15612, 153, 154, 155, 33isirred 20419 . 2 (𝑄 ∈ (Irred‘𝑃) ↔ (𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)) ∧ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄))
15717, 152, 156sylanbrc 583 1 (𝜑𝑄 ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wfal 1552  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  cun 3949  wss 3951  c0 4333  {csn 4626  {cpr 4628   class class class wbr 5143  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  cle 11296  cmin 11492  2c2 12321  3c3 12322  0cn0 12526  ...cfz 13547  Basecbs 17247  .rcmulr 17298  0gc0g 17484  Ringcrg 20230  CRingccrg 20231  Unitcui 20355  Irredcir 20356  Domncdomn 20692  IDomncidom 20693  Fieldcfield 20730  algSccascl 21872  Poly1cpl1 22178  eval1ce1 22318  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-irred 20359  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-lmod 20860  df-lss 20930  df-lsp 20970  df-cnfld 21365  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-mon1 26170
This theorem is referenced by:  2sqr3minply  33791
  Copyright terms: Public domain W3C validator