Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg3rt0irred Structured version   Visualization version   GIF version

Theorem ply1dg3rt0irred 33558
Description: If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg3rt0irred.z 0 = (0g𝐹)
ply1dg3rt0irred.o 𝑂 = (eval1𝐹)
ply1dg3rt0irred.d 𝐷 = (deg1𝐹)
ply1dg3rt0irred.p 𝑃 = (Poly1𝐹)
ply1dg3rt0irred.b 𝐵 = (Base‘𝑃)
ply1dg3rt0irred.f (𝜑𝐹 ∈ Field)
ply1dg3rt0irred.q (𝜑𝑄𝐵)
ply1dg3rt0irred.1 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
ply1dg3rt0irred.2 (𝜑 → (𝐷𝑄) = 3)
Assertion
Ref Expression
ply1dg3rt0irred (𝜑𝑄 ∈ (Irred‘𝑃))

Proof of Theorem ply1dg3rt0irred
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1dg3rt0irred.q . . 3 (𝜑𝑄𝐵)
2 ply1dg3rt0irred.2 . . . . 5 (𝜑 → (𝐷𝑄) = 3)
3 3ne0 12299 . . . . . 6 3 ≠ 0
43a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
52, 4eqnetrd 2993 . . . 4 (𝜑 → (𝐷𝑄) ≠ 0)
6 ply1dg3rt0irred.p . . . . . 6 𝑃 = (Poly1𝐹)
7 eqid 2730 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
8 eqid 2730 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
9 ply1dg3rt0irred.z . . . . . 6 0 = (0g𝐹)
10 ply1dg3rt0irred.f . . . . . 6 (𝜑𝐹 ∈ Field)
11 ply1dg3rt0irred.d . . . . . 6 𝐷 = (deg1𝐹)
12 ply1dg3rt0irred.b . . . . . . 7 𝐵 = (Base‘𝑃)
131, 12eleqtrdi 2839 . . . . . 6 (𝜑𝑄 ∈ (Base‘𝑃))
146, 7, 8, 9, 10, 11, 13ply1unit 33551 . . . . 5 (𝜑 → (𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) = 0))
1514necon3bbid 2963 . . . 4 (𝜑 → (¬ 𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) ≠ 0))
165, 15mpbird 257 . . 3 (𝜑 → ¬ 𝑄 ∈ (Unit‘𝑃))
171, 16eldifd 3928 . 2 (𝜑𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)))
1810ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Field)
19 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃)))
2019eldifad 3929 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝𝐵)
2120, 12eleqtrdi 2839 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (Base‘𝑃))
226, 7, 8, 9, 18, 11, 21ply1unit 33551 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ∈ (Unit‘𝑃) ↔ (𝐷𝑝) = 0))
2322biimpar 477 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → 𝑝 ∈ (Unit‘𝑃))
2419eldifbd 3930 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑝 ∈ (Unit‘𝑃))
2524adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ¬ 𝑝 ∈ (Unit‘𝑃))
2623, 25pm2.21fal 1562 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ⊥)
2726adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 0) → ⊥)
28 ply1dg3rt0irred.o . . . . . . . . . . . . . . 15 𝑂 = (eval1𝐹)
2910fldcrngd 20658 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ CRing)
3029ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ CRing)
31 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)))
3231eldifad 3929 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞𝐵)
33 eqid 2730 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
346, 12, 28, 11, 9, 30, 20, 32, 33ply1mulrtss 33557 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }))
35 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) = 𝑄)
3635fveq2d 6865 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3736cnveqd 5842 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3837imaeq1d 6033 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
3934, 38sseqtrd 3986 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂𝑄) “ { 0 }))
40 ply1dg3rt0irred.1 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
4140ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑄) “ { 0 }) = ∅)
4239, 41sseqtrd 3986 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ∅)
43 ss0 4368 . . . . . . . . . . . 12 (((𝑂𝑝) “ { 0 }) ⊆ ∅ → ((𝑂𝑝) “ { 0 }) = ∅)
4442, 43syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) = ∅)
4544adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) = ∅)
4618adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝐹 ∈ Field)
4720adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝑝𝐵)
48 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → (𝐷𝑝) = 1)
496, 12, 28, 11, 9, 46, 47, 48ply1dg1rtn0 33556 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) ≠ ∅)
5045, 49pm2.21ddne 3010 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ⊥)
5150adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 1) → ⊥)
52 elpri 4616 . . . . . . . . 9 ((𝐷𝑝) ∈ {0, 1} → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5352adantl 481 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5427, 51, 53mpjaodan 960 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ⊥)
556, 12, 28, 11, 9, 30, 32, 20, 33ply1mulrtss 33557 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }))
56 fldidom 20687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ Field → 𝐹 ∈ IDomn)
5710, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ∈ IDomn)
586ply1idom 26037 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ IDomn → 𝑃 ∈ IDomn)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ IDomn)
6059idomcringd 20643 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ CRing)
6160ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ CRing)
6212, 33, 61, 32, 20crngcomd 20171 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = (𝑝(.r𝑃)𝑞))
6362, 35eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = 𝑄)
6463fveq2d 6865 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6564cnveqd 5842 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6665imaeq1d 6033 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
6766, 41eqtrd 2765 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ∅)
6855, 67sseqtrd 3986 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ∅)
69 ss0 4368 . . . . . . . . . . . 12 (((𝑂𝑞) “ { 0 }) ⊆ ∅ → ((𝑂𝑞) “ { 0 }) = ∅)
7068, 69syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) = ∅)
7170adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) = ∅)
7218adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝐹 ∈ Field)
7332adantr 480 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝑞𝐵)
7429crngringd 20162 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Ring)
7574ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Ring)
76 eqid 2730 . . . . . . . . . . . . . . . . . 18 (0g𝑃) = (0g𝑃)
7759idomdomd 20642 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ Domn)
79 3nn0 12467 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
802, 79eqeltrdi 2837 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷𝑄) ∈ ℕ0)
8111, 6, 76, 12deg1nn0clb 26002 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Ring ∧ 𝑄𝐵) → (𝑄 ≠ (0g𝑃) ↔ (𝐷𝑄) ∈ ℕ0))
8281biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ Ring ∧ 𝑄𝐵) ∧ (𝐷𝑄) ∈ ℕ0) → 𝑄 ≠ (0g𝑃))
8374, 1, 80, 82syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ≠ (0g𝑃))
8483ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑄 ≠ (0g𝑃))
8535, 84eqnetrd 2993 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) ≠ (0g𝑃))
8612, 33, 76, 78, 20, 32, 85domnmuln0rd 33232 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ≠ (0g𝑃) ∧ 𝑞 ≠ (0g𝑃)))
8786simpld 494 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ≠ (0g𝑃))
8811, 6, 76, 12deg1nn0cl 26000 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑝𝐵𝑝 ≠ (0g𝑃)) → (𝐷𝑝) ∈ ℕ0)
8975, 20, 87, 88syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℕ0)
9089nn0cnd 12512 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℂ)
9186simprd 495 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ≠ (0g𝑃))
9211, 6, 76, 12deg1nn0cl 26000 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞𝐵𝑞 ≠ (0g𝑃)) → (𝐷𝑞) ∈ ℕ0)
9375, 32, 91, 92syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℕ0)
9493nn0cnd 12512 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℂ)
9535fveq2d 6865 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = (𝐷𝑄))
9657idomdomd 20642 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Domn)
9796ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Domn)
9811, 6, 12, 33, 76, 97, 20, 87, 32, 91deg1mul 26027 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = ((𝐷𝑝) + (𝐷𝑞)))
992ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑄) = 3)
10095, 98, 993eqtr3d 2773 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) + (𝐷𝑞)) = 3)
10190, 94, 100mvlladdd 11596 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) = (3 − (𝐷𝑝)))
102101adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = (3 − (𝐷𝑝)))
103 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑝) = 2)
104103oveq2d 7406 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − (𝐷𝑝)) = (3 − 2))
105 3cn 12274 . . . . . . . . . . . . . 14 3 ∈ ℂ
106 2cn 12268 . . . . . . . . . . . . . 14 2 ∈ ℂ
107 ax-1cn 11133 . . . . . . . . . . . . . 14 1 ∈ ℂ
108 2p1e3 12330 . . . . . . . . . . . . . 14 (2 + 1) = 3
109105, 106, 107, 108subaddrii 11518 . . . . . . . . . . . . 13 (3 − 2) = 1
110109a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − 2) = 1)
111102, 104, 1103eqtrd 2769 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = 1)
1126, 12, 28, 11, 9, 72, 73, 111ply1dg1rtn0 33556 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) ≠ ∅)
11371, 112pm2.21ddne 3010 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ⊥)
114113adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 2) → ⊥)
115101adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = (3 − (𝐷𝑝)))
116 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑝) = 3)
117116oveq2d 7406 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − (𝐷𝑝)) = (3 − 3))
118105subidi 11500 . . . . . . . . . . . . 13 (3 − 3) = 0
119118a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − 3) = 0)
120115, 117, 1193eqtrd 2769 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = 0)
12118adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝐹 ∈ Field)
12232, 12eleqtrdi 2839 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (Base‘𝑃))
123122adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Base‘𝑃))
1246, 7, 8, 9, 121, 11, 123ply1unit 33551 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝑞 ∈ (Unit‘𝑃) ↔ (𝐷𝑞) = 0))
125120, 124mpbird 257 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Unit‘𝑃))
12631eldifbd 3930 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑞 ∈ (Unit‘𝑃))
127126adantr 480 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ¬ 𝑞 ∈ (Unit‘𝑃))
128125, 127pm2.21fal 1562 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ⊥)
129128adantlr 715 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 3) → ⊥)
130 elpri 4616 . . . . . . . . 9 ((𝐷𝑝) ∈ {2, 3} → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
131130adantl 481 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
132114, 129, 131mpjaodan 960 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ⊥)
13379a1i 11 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 3 ∈ ℕ0)
13489nn0red 12511 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℝ)
135 nn0addge1 12495 . . . . . . . . . . . 12 (((𝐷𝑝) ∈ ℝ ∧ (𝐷𝑞) ∈ ℕ0) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
136134, 93, 135syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
137136, 100breqtrd 5136 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ 3)
138 fznn0 13587 . . . . . . . . . . 11 (3 ∈ ℕ0 → ((𝐷𝑝) ∈ (0...3) ↔ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)))
139138biimpar 477 . . . . . . . . . 10 ((3 ∈ ℕ0 ∧ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)) → (𝐷𝑝) ∈ (0...3))
140133, 89, 137, 139syl12anc 836 . . . . . . . . 9 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ (0...3))
141 fz0to3un2pr 13597 . . . . . . . . 9 (0...3) = ({0, 1} ∪ {2, 3})
142140, 141eleqtrdi 2839 . . . . . . . 8 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}))
143 elun 4119 . . . . . . . 8 ((𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}) ↔ ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
144142, 143sylib 218 . . . . . . 7 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
14554, 132, 144mpjaodan 960 . . . . . 6 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
146145r19.29ffa 32407 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
147146inegd 1560 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
148 ralnex2 3114 . . . 4 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄 ↔ ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
149147, 148sylibr 234 . . 3 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
150 df-ne 2927 . . . 4 ((𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
1511502ralbii 3109 . . 3 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
152149, 151sylibr 234 . 2 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄)
153 eqid 2730 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
154 eqid 2730 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
155 eqid 2730 . . 3 (𝐵 ∖ (Unit‘𝑃)) = (𝐵 ∖ (Unit‘𝑃))
15612, 153, 154, 155, 33isirred 20335 . 2 (𝑄 ∈ (Irred‘𝑃) ↔ (𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)) ∧ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄))
15717, 152, 156sylanbrc 583 1 (𝜑𝑄 ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wfal 1552  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cun 3915  wss 3917  c0 4299  {csn 4592  {cpr 4594   class class class wbr 5110  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  cmin 11412  2c2 12248  3c3 12249  0cn0 12449  ...cfz 13475  Basecbs 17186  .rcmulr 17228  0gc0g 17409  Ringcrg 20149  CRingccrg 20150  Unitcui 20271  Irredcir 20272  Domncdomn 20608  IDomncidom 20609  Fieldcfield 20646  algSccascl 21768  Poly1cpl1 22068  eval1ce1 22208  deg1cdg1 25966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043
This theorem is referenced by:  2sqr3minply  33777  cos9thpiminply  33785
  Copyright terms: Public domain W3C validator