Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg3rt0irred Structured version   Visualization version   GIF version

Theorem ply1dg3rt0irred 33459
Description: If a cubic polynomial over a field has no roots, it is irreducible. (Proposed by Saveliy Skresanov, 5-Jun-2025.) (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg3rt0irred.z 0 = (0g𝐹)
ply1dg3rt0irred.o 𝑂 = (eval1𝐹)
ply1dg3rt0irred.d 𝐷 = (deg1𝐹)
ply1dg3rt0irred.p 𝑃 = (Poly1𝐹)
ply1dg3rt0irred.b 𝐵 = (Base‘𝑃)
ply1dg3rt0irred.f (𝜑𝐹 ∈ Field)
ply1dg3rt0irred.q (𝜑𝑄𝐵)
ply1dg3rt0irred.1 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
ply1dg3rt0irred.2 (𝜑 → (𝐷𝑄) = 3)
Assertion
Ref Expression
ply1dg3rt0irred (𝜑𝑄 ∈ (Irred‘𝑃))

Proof of Theorem ply1dg3rt0irred
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1dg3rt0irred.q . . 3 (𝜑𝑄𝐵)
2 ply1dg3rt0irred.2 . . . . 5 (𝜑 → (𝐷𝑄) = 3)
3 3ne0 12363 . . . . . 6 3 ≠ 0
43a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
52, 4eqnetrd 2998 . . . 4 (𝜑 → (𝐷𝑄) ≠ 0)
6 ply1dg3rt0irred.p . . . . . 6 𝑃 = (Poly1𝐹)
7 eqid 2726 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
8 eqid 2726 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
9 ply1dg3rt0irred.z . . . . . 6 0 = (0g𝐹)
10 ply1dg3rt0irred.f . . . . . 6 (𝜑𝐹 ∈ Field)
11 ply1dg3rt0irred.d . . . . . 6 𝐷 = (deg1𝐹)
12 ply1dg3rt0irred.b . . . . . . 7 𝐵 = (Base‘𝑃)
131, 12eleqtrdi 2836 . . . . . 6 (𝜑𝑄 ∈ (Base‘𝑃))
146, 7, 8, 9, 10, 11, 13ply1unit 33452 . . . . 5 (𝜑 → (𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) = 0))
1514necon3bbid 2968 . . . 4 (𝜑 → (¬ 𝑄 ∈ (Unit‘𝑃) ↔ (𝐷𝑄) ≠ 0))
165, 15mpbird 256 . . 3 (𝜑 → ¬ 𝑄 ∈ (Unit‘𝑃))
171, 16eldifd 3959 . 2 (𝜑𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)))
1810ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Field)
19 simpllr 774 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (𝐵 ∖ (Unit‘𝑃)))
2019eldifad 3960 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝𝐵)
2120, 12eleqtrdi 2836 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ∈ (Base‘𝑃))
226, 7, 8, 9, 18, 11, 21ply1unit 33452 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ∈ (Unit‘𝑃) ↔ (𝐷𝑝) = 0))
2322biimpar 476 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → 𝑝 ∈ (Unit‘𝑃))
2419eldifbd 3961 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑝 ∈ (Unit‘𝑃))
2524adantr 479 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ¬ 𝑝 ∈ (Unit‘𝑃))
2623, 25pm2.21fal 1556 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 0) → ⊥)
2726adantlr 713 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 0) → ⊥)
28 ply1dg3rt0irred.o . . . . . . . . . . . . . . 15 𝑂 = (eval1𝐹)
2910fldcrngd 20715 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ CRing)
3029ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ CRing)
31 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)))
3231eldifad 3960 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞𝐵)
33 eqid 2726 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
346, 12, 28, 11, 9, 30, 20, 32, 33ply1mulrtss 33458 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }))
35 simpr 483 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) = 𝑄)
3635fveq2d 6896 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3736cnveqd 5874 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑝(.r𝑃)𝑞)) = (𝑂𝑄))
3837imaeq1d 6060 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑝(.r𝑃)𝑞)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
3934, 38sseqtrd 4021 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ((𝑂𝑄) “ { 0 }))
40 ply1dg3rt0irred.1 . . . . . . . . . . . . . 14 (𝜑 → ((𝑂𝑄) “ { 0 }) = ∅)
4140ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑄) “ { 0 }) = ∅)
4239, 41sseqtrd 4021 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) ⊆ ∅)
43 ss0 4398 . . . . . . . . . . . 12 (((𝑂𝑝) “ { 0 }) ⊆ ∅ → ((𝑂𝑝) “ { 0 }) = ∅)
4442, 43syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑝) “ { 0 }) = ∅)
4544adantr 479 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) = ∅)
4618adantr 479 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝐹 ∈ Field)
4720adantr 479 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → 𝑝𝐵)
48 simpr 483 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → (𝐷𝑝) = 1)
496, 12, 28, 11, 9, 46, 47, 48ply1dg1rtn0 33457 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ((𝑂𝑝) “ { 0 }) ≠ ∅)
5045, 49pm2.21ddne 3016 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 1) → ⊥)
5150adantlr 713 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) ∧ (𝐷𝑝) = 1) → ⊥)
52 elpri 4648 . . . . . . . . 9 ((𝐷𝑝) ∈ {0, 1} → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5352adantl 480 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ((𝐷𝑝) = 0 ∨ (𝐷𝑝) = 1))
5427, 51, 53mpjaodan 956 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {0, 1}) → ⊥)
556, 12, 28, 11, 9, 30, 32, 20, 33ply1mulrtss 33458 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }))
56 fldidom 20744 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ Field → 𝐹 ∈ IDomn)
5710, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ∈ IDomn)
586ply1idom 26148 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ IDomn → 𝑃 ∈ IDomn)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ IDomn)
6059idomcringd 20700 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ CRing)
6160ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ CRing)
6212, 33, 61, 32, 20crngcomd 20233 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = (𝑝(.r𝑃)𝑞))
6362, 35eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑞(.r𝑃)𝑝) = 𝑄)
6463fveq2d 6896 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6564cnveqd 5874 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑂‘(𝑞(.r𝑃)𝑝)) = (𝑂𝑄))
6665imaeq1d 6060 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ((𝑂𝑄) “ { 0 }))
6766, 41eqtrd 2766 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂‘(𝑞(.r𝑃)𝑝)) “ { 0 }) = ∅)
6855, 67sseqtrd 4021 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) ⊆ ∅)
69 ss0 4398 . . . . . . . . . . . 12 (((𝑂𝑞) “ { 0 }) ⊆ ∅ → ((𝑂𝑞) “ { 0 }) = ∅)
7068, 69syl 17 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝑂𝑞) “ { 0 }) = ∅)
7170adantr 479 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) = ∅)
7218adantr 479 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝐹 ∈ Field)
7332adantr 479 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → 𝑞𝐵)
7429crngringd 20224 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Ring)
7574ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Ring)
76 eqid 2726 . . . . . . . . . . . . . . . . . 18 (0g𝑃) = (0g𝑃)
7759idomdomd 20699 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Domn)
7877ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑃 ∈ Domn)
79 3nn0 12535 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
802, 79eqeltrdi 2834 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐷𝑄) ∈ ℕ0)
8111, 6, 76, 12deg1nn0clb 26113 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Ring ∧ 𝑄𝐵) → (𝑄 ≠ (0g𝑃) ↔ (𝐷𝑄) ∈ ℕ0))
8281biimpar 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ Ring ∧ 𝑄𝐵) ∧ (𝐷𝑄) ∈ ℕ0) → 𝑄 ≠ (0g𝑃))
8374, 1, 80, 82syl21anc 836 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ≠ (0g𝑃))
8483ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑄 ≠ (0g𝑃))
8535, 84eqnetrd 2998 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝(.r𝑃)𝑞) ≠ (0g𝑃))
8612, 33, 76, 78, 20, 32, 85domnmuln0rd 33133 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝑝 ≠ (0g𝑃) ∧ 𝑞 ≠ (0g𝑃)))
8786simpld 493 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑝 ≠ (0g𝑃))
8811, 6, 76, 12deg1nn0cl 26111 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑝𝐵𝑝 ≠ (0g𝑃)) → (𝐷𝑝) ∈ ℕ0)
8975, 20, 87, 88syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℕ0)
9089nn0cnd 12579 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℂ)
9186simprd 494 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ≠ (0g𝑃))
9211, 6, 76, 12deg1nn0cl 26111 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞𝐵𝑞 ≠ (0g𝑃)) → (𝐷𝑞) ∈ ℕ0)
9375, 32, 91, 92syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℕ0)
9493nn0cnd 12579 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) ∈ ℂ)
9535fveq2d 6896 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = (𝐷𝑄))
9657idomdomd 20699 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ Domn)
9796ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝐹 ∈ Domn)
9811, 6, 12, 33, 76, 97, 20, 87, 32, 91deg1mul 26138 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷‘(𝑝(.r𝑃)𝑞)) = ((𝐷𝑝) + (𝐷𝑞)))
992ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑄) = 3)
10095, 98, 993eqtr3d 2774 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) + (𝐷𝑞)) = 3)
10190, 94, 100mvlladdd 11665 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑞) = (3 − (𝐷𝑝)))
102101adantr 479 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = (3 − (𝐷𝑝)))
103 simpr 483 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑝) = 2)
104103oveq2d 7431 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − (𝐷𝑝)) = (3 − 2))
105 3cn 12338 . . . . . . . . . . . . . 14 3 ∈ ℂ
106 2cn 12332 . . . . . . . . . . . . . 14 2 ∈ ℂ
107 ax-1cn 11206 . . . . . . . . . . . . . 14 1 ∈ ℂ
108 2p1e3 12399 . . . . . . . . . . . . . 14 (2 + 1) = 3
109105, 106, 107, 108subaddrii 11589 . . . . . . . . . . . . 13 (3 − 2) = 1
110109a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (3 − 2) = 1)
111102, 104, 1103eqtrd 2770 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → (𝐷𝑞) = 1)
1126, 12, 28, 11, 9, 72, 73, 111ply1dg1rtn0 33457 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ((𝑂𝑞) “ { 0 }) ≠ ∅)
11371, 112pm2.21ddne 3016 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 2) → ⊥)
114113adantlr 713 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 2) → ⊥)
115101adantr 479 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = (3 − (𝐷𝑝)))
116 simpr 483 . . . . . . . . . . . . 13 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑝) = 3)
117116oveq2d 7431 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − (𝐷𝑝)) = (3 − 3))
118105subidi 11571 . . . . . . . . . . . . 13 (3 − 3) = 0
119118a1i 11 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (3 − 3) = 0)
120115, 117, 1193eqtrd 2770 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝐷𝑞) = 0)
12118adantr 479 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝐹 ∈ Field)
12232, 12eleqtrdi 2836 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 𝑞 ∈ (Base‘𝑃))
123122adantr 479 . . . . . . . . . . . 12 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Base‘𝑃))
1246, 7, 8, 9, 121, 11, 123ply1unit 33452 . . . . . . . . . . 11 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → (𝑞 ∈ (Unit‘𝑃) ↔ (𝐷𝑞) = 0))
125120, 124mpbird 256 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → 𝑞 ∈ (Unit‘𝑃))
12631eldifbd 3961 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ¬ 𝑞 ∈ (Unit‘𝑃))
127126adantr 479 . . . . . . . . . 10 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ¬ 𝑞 ∈ (Unit‘𝑃))
128125, 127pm2.21fal 1556 . . . . . . . . 9 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) = 3) → ⊥)
129128adantlr 713 . . . . . . . 8 ((((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) ∧ (𝐷𝑝) = 3) → ⊥)
130 elpri 4648 . . . . . . . . 9 ((𝐷𝑝) ∈ {2, 3} → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
131130adantl 480 . . . . . . . 8 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ((𝐷𝑝) = 2 ∨ (𝐷𝑝) = 3))
132114, 129, 131mpjaodan 956 . . . . . . 7 (((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) ∧ (𝐷𝑝) ∈ {2, 3}) → ⊥)
13379a1i 11 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → 3 ∈ ℕ0)
13489nn0red 12578 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ℝ)
135 nn0addge1 12563 . . . . . . . . . . . 12 (((𝐷𝑝) ∈ ℝ ∧ (𝐷𝑞) ∈ ℕ0) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
136134, 93, 135syl2anc 582 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ ((𝐷𝑝) + (𝐷𝑞)))
137136, 100breqtrd 5171 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ≤ 3)
138 fznn0 13640 . . . . . . . . . . 11 (3 ∈ ℕ0 → ((𝐷𝑝) ∈ (0...3) ↔ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)))
139138biimpar 476 . . . . . . . . . 10 ((3 ∈ ℕ0 ∧ ((𝐷𝑝) ∈ ℕ0 ∧ (𝐷𝑝) ≤ 3)) → (𝐷𝑝) ∈ (0...3))
140133, 89, 137, 139syl12anc 835 . . . . . . . . 9 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ (0...3))
141 fz0to3un2pr 13650 . . . . . . . . 9 (0...3) = ({0, 1} ∪ {2, 3})
142140, 141eleqtrdi 2836 . . . . . . . 8 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → (𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}))
143 elun 4147 . . . . . . . 8 ((𝐷𝑝) ∈ ({0, 1} ∪ {2, 3}) ↔ ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
144142, 143sylib 217 . . . . . . 7 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ((𝐷𝑝) ∈ {0, 1} ∨ (𝐷𝑝) ∈ {2, 3}))
14554, 132, 144mpjaodan 956 . . . . . 6 ((((𝜑𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ 𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))) ∧ (𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
146145r19.29ffa 32397 . . . . 5 ((𝜑 ∧ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄) → ⊥)
147146inegd 1554 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
148 ralnex2 3123 . . . 4 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄 ↔ ¬ ∃𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∃𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) = 𝑄)
149147, 148sylibr 233 . . 3 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
150 df-ne 2931 . . . 4 ((𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
1511502ralbii 3118 . . 3 (∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄 ↔ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃)) ¬ (𝑝(.r𝑃)𝑞) = 𝑄)
152149, 151sylibr 233 . 2 (𝜑 → ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄)
153 eqid 2726 . . 3 (Unit‘𝑃) = (Unit‘𝑃)
154 eqid 2726 . . 3 (Irred‘𝑃) = (Irred‘𝑃)
155 eqid 2726 . . 3 (𝐵 ∖ (Unit‘𝑃)) = (𝐵 ∖ (Unit‘𝑃))
15612, 153, 154, 155, 33isirred 20396 . 2 (𝑄 ∈ (Irred‘𝑃) ↔ (𝑄 ∈ (𝐵 ∖ (Unit‘𝑃)) ∧ ∀𝑝 ∈ (𝐵 ∖ (Unit‘𝑃))∀𝑞 ∈ (𝐵 ∖ (Unit‘𝑃))(𝑝(.r𝑃)𝑞) ≠ 𝑄))
15717, 152, 156sylanbrc 581 1 (𝜑𝑄 ∈ (Irred‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1534  wfal 1546  wcel 2099  wne 2930  wral 3051  wrex 3060  cdif 3945  cun 3946  wss 3948  c0 4324  {csn 4625  {cpr 4627   class class class wbr 5145  ccnv 5673  cima 5677  cfv 6545  (class class class)co 7415  cr 11147  0cc0 11148  1c1 11149   + caddc 11151  cle 11289  cmin 11484  2c2 12312  3c3 12313  0cn0 12517  ...cfz 13531  Basecbs 17207  .rcmulr 17261  0gc0g 17448  Ringcrg 20211  CRingccrg 20212  Unitcui 20332  Irredcir 20333  Domncdomn 20665  IDomncidom 20666  Fieldcfield 20703  algSccascl 21845  Poly1cpl1 22161  eval1ce1 22301  deg1cdg1 26074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226  ax-addf 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-iin 4998  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-isom 6554  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8848  df-pm 8849  df-ixp 8918  df-en 8966  df-dom 8967  df-sdom 8968  df-fin 8969  df-fsupp 9398  df-sup 9477  df-oi 9545  df-card 9974  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-7 12325  df-8 12326  df-9 12327  df-n0 12518  df-z 12604  df-dec 12723  df-uz 12868  df-fz 13532  df-fzo 13675  df-seq 14015  df-hash 14342  df-struct 17143  df-sets 17160  df-slot 17178  df-ndx 17190  df-base 17208  df-ress 17237  df-plusg 17273  df-mulr 17274  df-starv 17275  df-sca 17276  df-vsca 17277  df-ip 17278  df-tset 17279  df-ple 17280  df-ds 17282  df-unif 17283  df-hom 17284  df-cco 17285  df-0g 17450  df-gsum 17451  df-prds 17456  df-pws 17458  df-mre 17593  df-mrc 17594  df-acs 17596  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18767  df-submnd 18768  df-grp 18925  df-minusg 18926  df-sbg 18927  df-mulg 19057  df-subg 19112  df-ghm 19202  df-cntz 19306  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-srg 20165  df-ring 20213  df-cring 20214  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-irred 20336  df-invr 20365  df-dvr 20378  df-rhm 20449  df-nzr 20490  df-subrng 20523  df-subrg 20548  df-rlreg 20667  df-domn 20668  df-idom 20669  df-drng 20704  df-field 20705  df-lmod 20833  df-lss 20904  df-lsp 20944  df-cnfld 21339  df-assa 21846  df-asp 21847  df-ascl 21848  df-psr 21901  df-mvr 21902  df-mpl 21903  df-opsr 21905  df-evls 22082  df-evl 22083  df-psr1 22164  df-vr1 22165  df-ply1 22166  df-coe1 22167  df-evls1 22302  df-evl1 22303  df-mdeg 26075  df-deg1 26076  df-mon1 26154
This theorem is referenced by:  2sqr3minply  33619
  Copyright terms: Public domain W3C validator