| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmasso | Structured version Visualization version GIF version | ||
| Description: In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmasso.b | ⊢ 𝐵 = (Base‘𝑅) |
| rprmasso.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmasso.d | ⊢ ∥ = (∥r‘𝑅) |
| rprmasso.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| rprmasso.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| rprmasso.1 | ⊢ (𝜑 → 𝑋 ∥ 𝑌) |
| rprmasso.y | ⊢ (𝜑 → 𝑌 ∥ 𝑋) |
| Ref | Expression |
|---|---|
| rprmasso | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmasso.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∥ 𝑌) | |
| 2 | rprmasso.y | . . . 4 ⊢ (𝜑 → 𝑌 ∥ 𝑋) | |
| 3 | rprmasso.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 5 | rprmasso.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 6 | rprmasso.p | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 7 | rprmasso.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 8 | rprmasso.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 9 | 3, 6, 7, 8 | rprmcl 33455 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | 3, 5 | dvdsrcl 20250 | . . . . . 6 ⊢ (𝑌 ∥ 𝑋 → 𝑌 ∈ 𝐵) |
| 11 | 2, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 12 | 7 | idomringd 20613 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | 3, 4, 5, 9, 11, 12 | rspsnasso 33325 | . . . 4 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋}))) |
| 14 | 1, 2, 13 | mpbi2and 712 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋})) |
| 15 | 7 | idomcringd 20612 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 16 | 8, 6 | eleqtrdi 2838 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
| 17 | 4, 15, 16 | rsprprmprmidl 33459 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑋}) ∈ (PrmIdeal‘𝑅)) |
| 18 | 14, 17 | eqeltrd 2828 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅)) |
| 19 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 20 | 6, 19, 7, 8 | rprmnz 33457 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ (0g‘𝑅)) |
| 21 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑅 ∈ Ring) |
| 22 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 ∈ 𝐵) |
| 23 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 = (0g‘𝑅)) | |
| 24 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 ∥ 𝑋) |
| 25 | 23, 24 | eqbrtrrd 5116 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → (0g‘𝑅) ∥ 𝑋) |
| 26 | 3, 5, 19 | dvdsr02 20257 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) ∥ 𝑋 ↔ 𝑋 = (0g‘𝑅))) |
| 27 | 26 | biimpa 476 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (0g‘𝑅) ∥ 𝑋) → 𝑋 = (0g‘𝑅)) |
| 28 | 21, 22, 25, 27 | syl21anc 837 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 = (0g‘𝑅)) |
| 29 | 20, 28 | mteqand 3016 | . . 3 ⊢ (𝜑 → 𝑌 ≠ (0g‘𝑅)) |
| 30 | 19, 3, 6, 4, 7, 11, 29 | rsprprmprmidlb 33460 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝑃 ↔ ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅))) |
| 31 | 18, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 0gc0g 17343 Ringcrg 20118 ∥rcdsr 20239 RPrimecrpm 20317 IDomncidom 20578 RSpancrsp 21114 PrmIdealcprmidl 33372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-rprm 20318 df-subrg 20455 df-idom 20581 df-lmod 20765 df-lss 20835 df-lsp 20875 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-prmidl 33373 |
| This theorem is referenced by: unitmulrprm 33465 |
| Copyright terms: Public domain | W3C validator |