| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmasso | Structured version Visualization version GIF version | ||
| Description: In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmasso.b | ⊢ 𝐵 = (Base‘𝑅) |
| rprmasso.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmasso.d | ⊢ ∥ = (∥r‘𝑅) |
| rprmasso.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| rprmasso.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| rprmasso.1 | ⊢ (𝜑 → 𝑋 ∥ 𝑌) |
| rprmasso.y | ⊢ (𝜑 → 𝑌 ∥ 𝑋) |
| Ref | Expression |
|---|---|
| rprmasso | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmasso.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∥ 𝑌) | |
| 2 | rprmasso.y | . . . 4 ⊢ (𝜑 → 𝑌 ∥ 𝑋) | |
| 3 | rprmasso.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2735 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 5 | rprmasso.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 6 | rprmasso.p | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 7 | rprmasso.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 8 | rprmasso.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 9 | 3, 6, 7, 8 | rprmcl 33479 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | 3, 5 | dvdsrcl 20323 | . . . . . 6 ⊢ (𝑌 ∥ 𝑋 → 𝑌 ∈ 𝐵) |
| 11 | 2, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 12 | 7 | idomringd 20686 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | 3, 4, 5, 9, 11, 12 | rspsnasso 33349 | . . . 4 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋}))) |
| 14 | 1, 2, 13 | mpbi2and 712 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋})) |
| 15 | 7 | idomcringd 20685 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 16 | 8, 6 | eleqtrdi 2844 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
| 17 | 4, 15, 16 | rsprprmprmidl 33483 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑋}) ∈ (PrmIdeal‘𝑅)) |
| 18 | 14, 17 | eqeltrd 2834 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅)) |
| 19 | eqid 2735 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 20 | 6, 19, 7, 8 | rprmnz 33481 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ (0g‘𝑅)) |
| 21 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑅 ∈ Ring) |
| 22 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 ∈ 𝐵) |
| 23 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 = (0g‘𝑅)) | |
| 24 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 ∥ 𝑋) |
| 25 | 23, 24 | eqbrtrrd 5143 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → (0g‘𝑅) ∥ 𝑋) |
| 26 | 3, 5, 19 | dvdsr02 20330 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) ∥ 𝑋 ↔ 𝑋 = (0g‘𝑅))) |
| 27 | 26 | biimpa 476 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (0g‘𝑅) ∥ 𝑋) → 𝑋 = (0g‘𝑅)) |
| 28 | 21, 22, 25, 27 | syl21anc 837 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 = (0g‘𝑅)) |
| 29 | 20, 28 | mteqand 3023 | . . 3 ⊢ (𝜑 → 𝑌 ≠ (0g‘𝑅)) |
| 30 | 19, 3, 6, 4, 7, 11, 29 | rsprprmprmidlb 33484 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝑃 ↔ ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅))) |
| 31 | 18, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 class class class wbr 5119 ‘cfv 6530 Basecbs 17226 0gc0g 17451 Ringcrg 20191 ∥rcdsr 20312 RPrimecrpm 20390 IDomncidom 20651 RSpancrsp 21166 PrmIdealcprmidl 33396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-rprm 20391 df-subrg 20528 df-idom 20654 df-lmod 20817 df-lss 20887 df-lsp 20927 df-sra 21129 df-rgmod 21130 df-lidl 21167 df-rsp 21168 df-prmidl 33397 |
| This theorem is referenced by: unitmulrprm 33489 |
| Copyright terms: Public domain | W3C validator |