![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmasso | Structured version Visualization version GIF version |
Description: In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmasso.b | ⊢ 𝐵 = (Base‘𝑅) |
rprmasso.p | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmasso.d | ⊢ ∥ = (∥r‘𝑅) |
rprmasso.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
rprmasso.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
rprmasso.1 | ⊢ (𝜑 → 𝑋 ∥ 𝑌) |
rprmasso.y | ⊢ (𝜑 → 𝑌 ∥ 𝑋) |
Ref | Expression |
---|---|
rprmasso | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprmasso.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∥ 𝑌) | |
2 | rprmasso.y | . . . 4 ⊢ (𝜑 → 𝑌 ∥ 𝑋) | |
3 | rprmasso.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2740 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
5 | rprmasso.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
6 | rprmasso.p | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
7 | rprmasso.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
8 | rprmasso.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
9 | 3, 6, 7, 8 | rprmcl 33511 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
10 | 3, 5 | dvdsrcl 20391 | . . . . . 6 ⊢ (𝑌 ∥ 𝑋 → 𝑌 ∈ 𝐵) |
11 | 2, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
12 | 7 | idomringd 20750 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | 3, 4, 5, 9, 11, 12 | rspsnasso 33381 | . . . 4 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋}))) |
14 | 1, 2, 13 | mpbi2and 711 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋})) |
15 | 7 | idomcringd 20749 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
16 | 8, 6 | eleqtrdi 2854 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
17 | 4, 15, 16 | rsprprmprmidl 33515 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑋}) ∈ (PrmIdeal‘𝑅)) |
18 | 14, 17 | eqeltrd 2844 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅)) |
19 | eqid 2740 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
20 | 6, 19, 7, 8 | rprmnz 33513 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ (0g‘𝑅)) |
21 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑅 ∈ Ring) |
22 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 ∈ 𝐵) |
23 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 = (0g‘𝑅)) | |
24 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 ∥ 𝑋) |
25 | 23, 24 | eqbrtrrd 5190 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → (0g‘𝑅) ∥ 𝑋) |
26 | 3, 5, 19 | dvdsr02 20398 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) ∥ 𝑋 ↔ 𝑋 = (0g‘𝑅))) |
27 | 26 | biimpa 476 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (0g‘𝑅) ∥ 𝑋) → 𝑋 = (0g‘𝑅)) |
28 | 21, 22, 25, 27 | syl21anc 837 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 = (0g‘𝑅)) |
29 | 20, 28 | mteqand 3039 | . . 3 ⊢ (𝜑 → 𝑌 ≠ (0g‘𝑅)) |
30 | 19, 3, 6, 4, 7, 11, 29 | rsprprmprmidlb 33516 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝑃 ↔ ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅))) |
31 | 18, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 0gc0g 17499 Ringcrg 20260 ∥rcdsr 20380 RPrimecrpm 20458 IDomncidom 20715 RSpancrsp 21240 PrmIdealcprmidl 33428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-rprm 20459 df-subrg 20597 df-idom 20718 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-prmidl 33429 |
This theorem is referenced by: unitmulrprm 33521 |
Copyright terms: Public domain | W3C validator |