| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmasso | Structured version Visualization version GIF version | ||
| Description: In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmasso.b | ⊢ 𝐵 = (Base‘𝑅) |
| rprmasso.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmasso.d | ⊢ ∥ = (∥r‘𝑅) |
| rprmasso.r | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
| rprmasso.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| rprmasso.1 | ⊢ (𝜑 → 𝑋 ∥ 𝑌) |
| rprmasso.y | ⊢ (𝜑 → 𝑌 ∥ 𝑋) |
| Ref | Expression |
|---|---|
| rprmasso | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmasso.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∥ 𝑌) | |
| 2 | rprmasso.y | . . . 4 ⊢ (𝜑 → 𝑌 ∥ 𝑋) | |
| 3 | rprmasso.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 5 | rprmasso.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 6 | rprmasso.p | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 7 | rprmasso.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
| 8 | rprmasso.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 9 | 3, 6, 7, 8 | rprmcl 33483 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | 3, 5 | dvdsrcl 20283 | . . . . . 6 ⊢ (𝑌 ∥ 𝑋 → 𝑌 ∈ 𝐵) |
| 11 | 2, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 12 | 7 | idomringd 20643 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | 3, 4, 5, 9, 11, 12 | rspsnasso 33353 | . . . 4 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋}))) |
| 14 | 1, 2, 13 | mpbi2and 712 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) = ((RSpan‘𝑅)‘{𝑋})) |
| 15 | 7 | idomcringd 20642 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 16 | 8, 6 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
| 17 | 4, 15, 16 | rsprprmprmidl 33487 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑋}) ∈ (PrmIdeal‘𝑅)) |
| 18 | 14, 17 | eqeltrd 2831 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅)) |
| 19 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 20 | 6, 19, 7, 8 | rprmnz 33485 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ (0g‘𝑅)) |
| 21 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑅 ∈ Ring) |
| 22 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 ∈ 𝐵) |
| 23 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 = (0g‘𝑅)) | |
| 24 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑌 ∥ 𝑋) |
| 25 | 23, 24 | eqbrtrrd 5113 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → (0g‘𝑅) ∥ 𝑋) |
| 26 | 3, 5, 19 | dvdsr02 20290 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) ∥ 𝑋 ↔ 𝑋 = (0g‘𝑅))) |
| 27 | 26 | biimpa 476 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (0g‘𝑅) ∥ 𝑋) → 𝑋 = (0g‘𝑅)) |
| 28 | 21, 22, 25, 27 | syl21anc 837 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑅)) → 𝑋 = (0g‘𝑅)) |
| 29 | 20, 28 | mteqand 3019 | . . 3 ⊢ (𝜑 → 𝑌 ≠ (0g‘𝑅)) |
| 30 | 19, 3, 6, 4, 7, 11, 29 | rsprprmprmidlb 33488 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝑃 ↔ ((RSpan‘𝑅)‘{𝑌}) ∈ (PrmIdeal‘𝑅))) |
| 31 | 18, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 0gc0g 17343 Ringcrg 20151 ∥rcdsr 20272 RPrimecrpm 20350 IDomncidom 20608 RSpancrsp 21144 PrmIdealcprmidl 33400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-rprm 20351 df-subrg 20485 df-idom 20611 df-lmod 20795 df-lss 20865 df-lsp 20905 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-rsp 21146 df-prmidl 33401 |
| This theorem is referenced by: unitmulrprm 33493 |
| Copyright terms: Public domain | W3C validator |