Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assafld Structured version   Visualization version   GIF version

Theorem assafld 33641
Description: If an algebra 𝐴 of finite degree over a division ring 𝐾 is an integral domain, then it is a field. Corollary of Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
assafld.k 𝐾 = (Scalar‘𝐴)
assafld.a (𝜑𝐴 ∈ AssAlg)
assafld.1 (𝜑𝐴 ∈ IDomn)
assafld.2 (𝜑𝐾 ∈ DivRing)
assafld.3 (𝜑 → (dim‘𝐴) ∈ ℕ0)
Assertion
Ref Expression
assafld (𝜑𝐴 ∈ Field)

Proof of Theorem assafld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 assafld.1 . . . 4 (𝜑𝐴 ∈ IDomn)
21idomringd 20643 . . 3 (𝜑𝐴 ∈ Ring)
3 eqid 2730 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
4 eqid 2730 . . . . . . 7 (Unit‘𝐴) = (Unit‘𝐴)
53, 4unitss 20291 . . . . . 6 (Unit‘𝐴) ⊆ (Base‘𝐴)
65a1i 11 . . . . 5 (𝜑 → (Unit‘𝐴) ⊆ (Base‘𝐴))
7 eqid 2730 . . . . . . 7 (0g𝐴) = (0g𝐴)
81idomdomd 20641 . . . . . . . . 9 (𝜑𝐴 ∈ Domn)
9 domnnzr 20621 . . . . . . . . 9 (𝐴 ∈ Domn → 𝐴 ∈ NzRing)
108, 9syl 17 . . . . . . . 8 (𝜑𝐴 ∈ NzRing)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → 𝐴 ∈ NzRing)
12 simpr 484 . . . . . . 7 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → (0g𝐴) ∈ (Unit‘𝐴))
134, 7, 11, 12unitnz 33198 . . . . . 6 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → (0g𝐴) ≠ (0g𝐴))
14 neirr 2936 . . . . . . 7 ¬ (0g𝐴) ≠ (0g𝐴)
1514a1i 11 . . . . . 6 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → ¬ (0g𝐴) ≠ (0g𝐴))
1613, 15pm2.65da 816 . . . . 5 (𝜑 → ¬ (0g𝐴) ∈ (Unit‘𝐴))
17 ssdifsn 4760 . . . . 5 ((Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g𝐴)}) ↔ ((Unit‘𝐴) ⊆ (Base‘𝐴) ∧ ¬ (0g𝐴) ∈ (Unit‘𝐴)))
186, 16, 17sylanbrc 583 . . . 4 (𝜑 → (Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g𝐴)}))
19 eqid 2730 . . . . 5 (RLReg‘𝐴) = (RLReg‘𝐴)
20 assafld.k . . . . 5 𝐾 = (Scalar‘𝐴)
21 assafld.a . . . . . 6 (𝜑𝐴 ∈ AssAlg)
2221adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝐴 ∈ AssAlg)
23 assafld.2 . . . . . 6 (𝜑𝐾 ∈ DivRing)
2423adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝐾 ∈ DivRing)
25 assafld.3 . . . . . 6 (𝜑 → (dim‘𝐴) ∈ ℕ0)
2625adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → (dim‘𝐴) ∈ ℕ0)
278adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝐴 ∈ Domn)
28 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)}))
2928eldifad 3934 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ (Base‘𝐴))
30 eldifsni 4762 . . . . . . 7 (𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)}) → 𝑥 ≠ (0g𝐴))
3128, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ≠ (0g𝐴))
323, 19, 7domnrrg 20628 . . . . . 6 ((𝐴 ∈ Domn ∧ 𝑥 ∈ (Base‘𝐴) ∧ 𝑥 ≠ (0g𝐴)) → 𝑥 ∈ (RLReg‘𝐴))
3327, 29, 31, 32syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ (RLReg‘𝐴))
3419, 4, 20, 22, 24, 26, 33assarrginv 33640 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ (Unit‘𝐴))
3518, 34eqelssd 3976 . . 3 (𝜑 → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)}))
363, 4, 7isdrng 20648 . . 3 (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)})))
372, 35, 36sylanbrc 583 . 2 (𝜑𝐴 ∈ DivRing)
381idomcringd 20642 . 2 (𝜑𝐴 ∈ CRing)
39 isfld 20655 . 2 (𝐴 ∈ Field ↔ (𝐴 ∈ DivRing ∧ 𝐴 ∈ CRing))
4037, 38, 39sylanbrc 583 1 (𝜑𝐴 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2927  cdif 3919  wss 3922  {csn 4597  cfv 6519  0cn0 12458  Basecbs 17185  Scalarcsca 17229  0gc0g 17408  Ringcrg 20148  CRingccrg 20149  Unitcui 20270  NzRingcnzr 20427  RLRegcrlreg 20606  Domncdomn 20607  IDomncidom 20608  DivRingcdr 20644  Fieldcfield 20645  AssAlgcasa 21765  dimcldim 33602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-reg 9563  ax-inf2 9612  ax-ac2 10434  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-rpss 7706  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-sup 9411  df-oi 9481  df-r1 9735  df-rank 9736  df-dju 9872  df-card 9910  df-acn 9913  df-ac 10087  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-xnn0 12532  df-z 12546  df-dec 12666  df-uz 12810  df-xadd 13086  df-fz 13482  df-fzo 13629  df-seq 13977  df-hash 14306  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ocomp 17247  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-mri 17555  df-acs 17556  df-proset 18261  df-drs 18262  df-poset 18280  df-ipo 18493  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-nzr 20428  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lmhm 20935  df-lmim 20936  df-lbs 20988  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-dsmm 21647  df-frlm 21662  df-uvc 21698  df-lindf 21721  df-linds 21722  df-assa 21768  df-dim 33603
This theorem is referenced by:  fldextrspunfld  33679
  Copyright terms: Public domain W3C validator