![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > assafld | Structured version Visualization version GIF version |
Description: If an algebra 𝐴 of finite degree over a division ring 𝐾 is an integral domain, then it is a field. Corollary of Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
Ref | Expression |
---|---|
assafld.k | ⊢ 𝐾 = (Scalar‘𝐴) |
assafld.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
assafld.1 | ⊢ (𝜑 → 𝐴 ∈ IDomn) |
assafld.2 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
assafld.3 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
Ref | Expression |
---|---|
assafld | ⊢ (𝜑 → 𝐴 ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assafld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ IDomn) | |
2 | 1 | idomringd 20745 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Ring) |
3 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
4 | eqid 2734 | . . . . . . 7 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
5 | 3, 4 | unitss 20397 | . . . . . 6 ⊢ (Unit‘𝐴) ⊆ (Base‘𝐴) |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Unit‘𝐴) ⊆ (Base‘𝐴)) |
7 | eqid 2734 | . . . . . . 7 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
8 | 1 | idomdomd 20743 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ Domn) |
9 | domnnzr 20723 | . . . . . . . . 9 ⊢ (𝐴 ∈ Domn → 𝐴 ∈ NzRing) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ NzRing) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → 𝐴 ∈ NzRing) |
12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → (0g‘𝐴) ∈ (Unit‘𝐴)) | |
13 | 4, 7, 11, 12 | unitnz 33211 | . . . . . 6 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → (0g‘𝐴) ≠ (0g‘𝐴)) |
14 | neirr 2951 | . . . . . . 7 ⊢ ¬ (0g‘𝐴) ≠ (0g‘𝐴) | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → ¬ (0g‘𝐴) ≠ (0g‘𝐴)) |
16 | 13, 15 | pm2.65da 816 | . . . . 5 ⊢ (𝜑 → ¬ (0g‘𝐴) ∈ (Unit‘𝐴)) |
17 | ssdifsn 4813 | . . . . 5 ⊢ ((Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g‘𝐴)}) ↔ ((Unit‘𝐴) ⊆ (Base‘𝐴) ∧ ¬ (0g‘𝐴) ∈ (Unit‘𝐴))) | |
18 | 6, 16, 17 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → (Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
19 | eqid 2734 | . . . . 5 ⊢ (RLReg‘𝐴) = (RLReg‘𝐴) | |
20 | assafld.k | . . . . 5 ⊢ 𝐾 = (Scalar‘𝐴) | |
21 | assafld.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝐴 ∈ AssAlg) |
23 | assafld.2 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝐾 ∈ DivRing) |
25 | assafld.3 | . . . . . 6 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → (dim‘𝐴) ∈ ℕ0) |
27 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝐴 ∈ Domn) |
28 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) | |
29 | 28 | eldifad 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ (Base‘𝐴)) |
30 | eldifsni 4815 | . . . . . . 7 ⊢ (𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)}) → 𝑥 ≠ (0g‘𝐴)) | |
31 | 28, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ≠ (0g‘𝐴)) |
32 | 3, 19, 7 | domnrrg 20730 | . . . . . 6 ⊢ ((𝐴 ∈ Domn ∧ 𝑥 ∈ (Base‘𝐴) ∧ 𝑥 ≠ (0g‘𝐴)) → 𝑥 ∈ (RLReg‘𝐴)) |
33 | 27, 29, 31, 32 | syl3anc 1371 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ (RLReg‘𝐴)) |
34 | 19, 4, 20, 22, 24, 26, 33 | assarrginv 33641 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ (Unit‘𝐴)) |
35 | 18, 34 | eqelssd 4024 | . . 3 ⊢ (𝜑 → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
36 | 3, 4, 7 | isdrng 20750 | . . 3 ⊢ (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)}))) |
37 | 2, 35, 36 | sylanbrc 582 | . 2 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
38 | 1 | idomcringd 20744 | . 2 ⊢ (𝜑 → 𝐴 ∈ CRing) |
39 | isfld 20757 | . 2 ⊢ (𝐴 ∈ Field ↔ (𝐴 ∈ DivRing ∧ 𝐴 ∈ CRing)) | |
40 | 37, 38, 39 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐴 ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∖ cdif 3967 ⊆ wss 3970 {csn 4648 ‘cfv 6572 ℕ0cn0 12549 Basecbs 17253 Scalarcsca 17309 0gc0g 17494 Ringcrg 20255 CRingccrg 20256 Unitcui 20376 NzRingcnzr 20533 RLRegcrlreg 20708 Domncdomn 20709 IDomncidom 20710 DivRingcdr 20746 Fieldcfield 20747 AssAlgcasa 21888 dimcldim 33603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-reg 9657 ax-inf2 9706 ax-ac2 10528 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-iin 5022 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-rpss 7754 df-om 7900 df-1st 8026 df-2nd 8027 df-supp 8198 df-tpos 8263 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-2o 8519 df-oadd 8522 df-er 8759 df-map 8882 df-ixp 8952 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-fsupp 9428 df-sup 9507 df-oi 9575 df-r1 9829 df-rank 9830 df-dju 9966 df-card 10004 df-acn 10007 df-ac 10181 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-xnn0 12622 df-z 12636 df-dec 12755 df-uz 12900 df-xadd 13172 df-fz 13564 df-fzo 13708 df-seq 14049 df-hash 14376 df-struct 17189 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-sca 17322 df-vsca 17323 df-ip 17324 df-tset 17325 df-ple 17326 df-ocomp 17327 df-ds 17328 df-hom 17330 df-cco 17331 df-0g 17496 df-gsum 17497 df-prds 17502 df-pws 17504 df-mre 17639 df-mrc 17640 df-mri 17641 df-acs 17642 df-proset 18360 df-drs 18361 df-poset 18378 df-ipo 18593 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-mhm 18813 df-submnd 18814 df-grp 18971 df-minusg 18972 df-sbg 18973 df-mulg 19103 df-subg 19158 df-ghm 19248 df-cntz 19352 df-lsm 19673 df-cmn 19819 df-abl 19820 df-mgp 20157 df-rng 20175 df-ur 20204 df-ring 20257 df-cring 20258 df-oppr 20355 df-dvdsr 20378 df-unit 20379 df-invr 20409 df-nzr 20534 df-subrg 20592 df-rlreg 20711 df-domn 20712 df-idom 20713 df-drng 20748 df-field 20749 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lmhm 21039 df-lmim 21040 df-lbs 21092 df-lvec 21120 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-uvc 21821 df-lindf 21844 df-linds 21845 df-assa 21891 df-dim 33604 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |