| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assafld | Structured version Visualization version GIF version | ||
| Description: If an algebra 𝐴 of finite degree over a division ring 𝐾 is an integral domain, then it is a field. Corollary of Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| assafld.k | ⊢ 𝐾 = (Scalar‘𝐴) |
| assafld.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assafld.1 | ⊢ (𝜑 → 𝐴 ∈ IDomn) |
| assafld.2 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assafld.3 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| Ref | Expression |
|---|---|
| assafld | ⊢ (𝜑 → 𝐴 ∈ Field) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assafld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ IDomn) | |
| 2 | 1 | idomringd 20695 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 3 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 4 | eqid 2734 | . . . . . . 7 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
| 5 | 3, 4 | unitss 20343 | . . . . . 6 ⊢ (Unit‘𝐴) ⊆ (Base‘𝐴) |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Unit‘𝐴) ⊆ (Base‘𝐴)) |
| 7 | eqid 2734 | . . . . . . 7 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
| 8 | 1 | idomdomd 20693 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ Domn) |
| 9 | domnnzr 20673 | . . . . . . . . 9 ⊢ (𝐴 ∈ Domn → 𝐴 ∈ NzRing) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ NzRing) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → 𝐴 ∈ NzRing) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → (0g‘𝐴) ∈ (Unit‘𝐴)) | |
| 13 | 4, 7, 11, 12 | unitnz 33173 | . . . . . 6 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → (0g‘𝐴) ≠ (0g‘𝐴)) |
| 14 | neirr 2940 | . . . . . . 7 ⊢ ¬ (0g‘𝐴) ≠ (0g‘𝐴) | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (0g‘𝐴) ∈ (Unit‘𝐴)) → ¬ (0g‘𝐴) ≠ (0g‘𝐴)) |
| 16 | 13, 15 | pm2.65da 816 | . . . . 5 ⊢ (𝜑 → ¬ (0g‘𝐴) ∈ (Unit‘𝐴)) |
| 17 | ssdifsn 4768 | . . . . 5 ⊢ ((Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g‘𝐴)}) ↔ ((Unit‘𝐴) ⊆ (Base‘𝐴) ∧ ¬ (0g‘𝐴) ∈ (Unit‘𝐴))) | |
| 18 | 6, 16, 17 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → (Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
| 19 | eqid 2734 | . . . . 5 ⊢ (RLReg‘𝐴) = (RLReg‘𝐴) | |
| 20 | assafld.k | . . . . 5 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 21 | assafld.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝐴 ∈ AssAlg) |
| 23 | assafld.2 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝐾 ∈ DivRing) |
| 25 | assafld.3 | . . . . . 6 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → (dim‘𝐴) ∈ ℕ0) |
| 27 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝐴 ∈ Domn) |
| 28 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) | |
| 29 | 28 | eldifad 3943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ (Base‘𝐴)) |
| 30 | eldifsni 4770 | . . . . . . 7 ⊢ (𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)}) → 𝑥 ≠ (0g‘𝐴)) | |
| 31 | 28, 30 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ≠ (0g‘𝐴)) |
| 32 | 3, 19, 7 | domnrrg 20680 | . . . . . 6 ⊢ ((𝐴 ∈ Domn ∧ 𝑥 ∈ (Base‘𝐴) ∧ 𝑥 ≠ (0g‘𝐴)) → 𝑥 ∈ (RLReg‘𝐴)) |
| 33 | 27, 29, 31, 32 | syl3anc 1372 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ (RLReg‘𝐴)) |
| 34 | 19, 4, 20, 22, 24, 26, 33 | assarrginv 33613 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((Base‘𝐴) ∖ {(0g‘𝐴)})) → 𝑥 ∈ (Unit‘𝐴)) |
| 35 | 18, 34 | eqelssd 3985 | . . 3 ⊢ (𝜑 → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)})) |
| 36 | 3, 4, 7 | isdrng 20700 | . . 3 ⊢ (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g‘𝐴)}))) |
| 37 | 2, 35, 36 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
| 38 | 1 | idomcringd 20694 | . 2 ⊢ (𝜑 → 𝐴 ∈ CRing) |
| 39 | isfld 20707 | . 2 ⊢ (𝐴 ∈ Field ↔ (𝐴 ∈ DivRing ∧ 𝐴 ∈ CRing)) | |
| 40 | 37, 38, 39 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴 ∈ Field) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ‘cfv 6540 ℕ0cn0 12508 Basecbs 17228 Scalarcsca 17275 0gc0g 17454 Ringcrg 20197 CRingccrg 20198 Unitcui 20322 NzRingcnzr 20479 RLRegcrlreg 20658 Domncdomn 20659 IDomncidom 20660 DivRingcdr 20696 Fieldcfield 20697 AssAlgcasa 21823 dimcldim 33575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-reg 9613 ax-inf2 9662 ax-ac2 10484 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-rpss 7724 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-oi 9531 df-r1 9785 df-rank 9786 df-dju 9922 df-card 9960 df-acn 9963 df-ac 10137 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-xnn0 12582 df-z 12596 df-dec 12716 df-uz 12860 df-xadd 13136 df-fz 13529 df-fzo 13676 df-seq 14024 df-hash 14351 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ocomp 17293 df-ds 17294 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-mri 17601 df-acs 17602 df-proset 18309 df-drs 18310 df-poset 18328 df-ipo 18541 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-submnd 18765 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mulg 19054 df-subg 19109 df-ghm 19199 df-cntz 19303 df-lsm 19621 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-ring 20199 df-cring 20200 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-invr 20355 df-nzr 20480 df-subrg 20537 df-rlreg 20661 df-domn 20662 df-idom 20663 df-drng 20698 df-field 20699 df-lmod 20827 df-lss 20897 df-lsp 20937 df-lmhm 20988 df-lmim 20989 df-lbs 21041 df-lvec 21069 df-sra 21139 df-rgmod 21140 df-dsmm 21705 df-frlm 21720 df-uvc 21756 df-lindf 21779 df-linds 21780 df-assa 21826 df-dim 33576 |
| This theorem is referenced by: fldextrspunfld 33654 |
| Copyright terms: Public domain | W3C validator |