Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assafld Structured version   Visualization version   GIF version

Theorem assafld 33640
Description: If an algebra 𝐴 of finite degree over a division ring 𝐾 is an integral domain, then it is a field. Corollary of Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
assafld.k 𝐾 = (Scalar‘𝐴)
assafld.a (𝜑𝐴 ∈ AssAlg)
assafld.1 (𝜑𝐴 ∈ IDomn)
assafld.2 (𝜑𝐾 ∈ DivRing)
assafld.3 (𝜑 → (dim‘𝐴) ∈ ℕ0)
Assertion
Ref Expression
assafld (𝜑𝐴 ∈ Field)

Proof of Theorem assafld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 assafld.1 . . . 4 (𝜑𝐴 ∈ IDomn)
21idomringd 20636 . . 3 (𝜑𝐴 ∈ Ring)
3 eqid 2730 . . . . . . 7 (Base‘𝐴) = (Base‘𝐴)
4 eqid 2730 . . . . . . 7 (Unit‘𝐴) = (Unit‘𝐴)
53, 4unitss 20287 . . . . . 6 (Unit‘𝐴) ⊆ (Base‘𝐴)
65a1i 11 . . . . 5 (𝜑 → (Unit‘𝐴) ⊆ (Base‘𝐴))
7 eqid 2730 . . . . . . 7 (0g𝐴) = (0g𝐴)
81idomdomd 20634 . . . . . . . . 9 (𝜑𝐴 ∈ Domn)
9 domnnzr 20614 . . . . . . . . 9 (𝐴 ∈ Domn → 𝐴 ∈ NzRing)
108, 9syl 17 . . . . . . . 8 (𝜑𝐴 ∈ NzRing)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → 𝐴 ∈ NzRing)
12 simpr 484 . . . . . . 7 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → (0g𝐴) ∈ (Unit‘𝐴))
134, 7, 11, 12unitnz 33196 . . . . . 6 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → (0g𝐴) ≠ (0g𝐴))
14 neirr 2935 . . . . . . 7 ¬ (0g𝐴) ≠ (0g𝐴)
1514a1i 11 . . . . . 6 ((𝜑 ∧ (0g𝐴) ∈ (Unit‘𝐴)) → ¬ (0g𝐴) ≠ (0g𝐴))
1613, 15pm2.65da 816 . . . . 5 (𝜑 → ¬ (0g𝐴) ∈ (Unit‘𝐴))
17 ssdifsn 4738 . . . . 5 ((Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g𝐴)}) ↔ ((Unit‘𝐴) ⊆ (Base‘𝐴) ∧ ¬ (0g𝐴) ∈ (Unit‘𝐴)))
186, 16, 17sylanbrc 583 . . . 4 (𝜑 → (Unit‘𝐴) ⊆ ((Base‘𝐴) ∖ {(0g𝐴)}))
19 eqid 2730 . . . . 5 (RLReg‘𝐴) = (RLReg‘𝐴)
20 assafld.k . . . . 5 𝐾 = (Scalar‘𝐴)
21 assafld.a . . . . . 6 (𝜑𝐴 ∈ AssAlg)
2221adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝐴 ∈ AssAlg)
23 assafld.2 . . . . . 6 (𝜑𝐾 ∈ DivRing)
2423adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝐾 ∈ DivRing)
25 assafld.3 . . . . . 6 (𝜑 → (dim‘𝐴) ∈ ℕ0)
2625adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → (dim‘𝐴) ∈ ℕ0)
278adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝐴 ∈ Domn)
28 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)}))
2928eldifad 3912 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ (Base‘𝐴))
30 eldifsni 4740 . . . . . . 7 (𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)}) → 𝑥 ≠ (0g𝐴))
3128, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ≠ (0g𝐴))
323, 19, 7domnrrg 20621 . . . . . 6 ((𝐴 ∈ Domn ∧ 𝑥 ∈ (Base‘𝐴) ∧ 𝑥 ≠ (0g𝐴)) → 𝑥 ∈ (RLReg‘𝐴))
3327, 29, 31, 32syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ (RLReg‘𝐴))
3419, 4, 20, 22, 24, 26, 33assarrginv 33639 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐴) ∖ {(0g𝐴)})) → 𝑥 ∈ (Unit‘𝐴))
3518, 34eqelssd 3954 . . 3 (𝜑 → (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)}))
363, 4, 7isdrng 20641 . . 3 (𝐴 ∈ DivRing ↔ (𝐴 ∈ Ring ∧ (Unit‘𝐴) = ((Base‘𝐴) ∖ {(0g𝐴)})))
372, 35, 36sylanbrc 583 . 2 (𝜑𝐴 ∈ DivRing)
381idomcringd 20635 . 2 (𝜑𝐴 ∈ CRing)
39 isfld 20648 . 2 (𝐴 ∈ Field ↔ (𝐴 ∈ DivRing ∧ 𝐴 ∈ CRing))
4037, 38, 39sylanbrc 583 1 (𝜑𝐴 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  cdif 3897  wss 3900  {csn 4574  cfv 6477  0cn0 12373  Basecbs 17112  Scalarcsca 17156  0gc0g 17335  Ringcrg 20144  CRingccrg 20145  Unitcui 20266  NzRingcnzr 20420  RLRegcrlreg 20599  Domncdomn 20600  IDomncidom 20601  DivRingcdr 20637  Fieldcfield 20638  AssAlgcasa 21780  dimcldim 33601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-r1 9649  df-rank 9650  df-dju 9786  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-xadd 13004  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ocomp 17174  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-mri 17482  df-acs 17483  df-proset 18192  df-drs 18193  df-poset 18211  df-ipo 18426  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-nzr 20421  df-subrg 20478  df-rlreg 20602  df-domn 20603  df-idom 20604  df-drng 20639  df-field 20640  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lmhm 20949  df-lmim 20950  df-lbs 21002  df-lvec 21030  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-uvc 21713  df-lindf 21736  df-linds 21737  df-assa 21783  df-dim 33602
This theorem is referenced by:  fldextrspunfld  33679
  Copyright terms: Public domain W3C validator