| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunfld | Structured version Visualization version GIF version | ||
| Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
| fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
| fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
| Ref | Expression |
|---|---|
| fldextrspunfld | ⊢ (𝜑 → 𝐸 ∈ Field) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)) | |
| 2 | fldextrspunfld.e | . . . . . 6 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
| 3 | fldextrspunfld.2 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 4 | 3 | flddrngd 20665 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 5 | 4 | drngringd 20661 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ Ring) |
| 6 | eqidd 2734 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 7 | fldextrspunfld.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 8 | eqid 2733 | . . . . . . . . . . 11 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 9 | 8 | sdrgss 20717 | . . . . . . . . . 10 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 10 | 7, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 11 | fldextrspunfld.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 12 | 8 | sdrgss 20717 | . . . . . . . . . 10 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 14 | 10, 13 | unssd 4141 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 15 | fldextrspunfld.n | . . . . . . . . 9 ⊢ 𝑁 = (RingSpan‘𝐿) | |
| 16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
| 17 | fldextrspunfld.c | . . . . . . . . 9 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
| 19 | 5, 6, 14, 16, 18 | rgspncl 20537 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
| 20 | 3, 19 | subrfld 33297 | . . . . . 6 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ IDomn) |
| 21 | 2, 20 | eqeltrid 2837 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ IDomn) |
| 22 | 21 | idomcringd 20651 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 23 | sdrgsubrg 20715 | . . . . . 6 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿)) | |
| 24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐿)) |
| 25 | 5, 6, 14, 16, 18 | rgspnssid 20538 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
| 26 | 25 | unssad 4142 | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| 27 | 2 | subsubrg 20522 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶))) |
| 28 | 27 | biimpar 477 | . . . . 5 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶)) → 𝐺 ∈ (SubRing‘𝐸)) |
| 29 | 19, 24, 26, 28 | syl12anc 836 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐸)) |
| 30 | eqid 2733 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺) | |
| 31 | 30 | sraassa 21815 | . . . 4 ⊢ ((𝐸 ∈ CRing ∧ 𝐺 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 32 | 22, 29, 31 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 33 | eqid 2733 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 34 | 8 | subrgss 20496 | . . . . . . 7 ⊢ (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿)) |
| 35 | 19, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐿)) |
| 36 | 2, 8 | ressbas2 17156 | . . . . . 6 ⊢ (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸)) |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 = (Base‘𝐸)) |
| 38 | 26, 37 | sseqtrd 3967 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐸)) |
| 39 | 30, 33, 21, 38 | sraidom 33667 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ IDomn) |
| 40 | ressabs 17166 | . . . . . . 7 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶) → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) | |
| 41 | 19, 26, 40 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) |
| 42 | 2 | oveq1i 7365 | . . . . . 6 ⊢ (𝐸 ↾s 𝐺) = ((𝐿 ↾s 𝐶) ↾s 𝐺) |
| 43 | fldextrspunfld.i | . . . . . 6 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 44 | 41, 42, 43 | 3eqtr4g 2793 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = 𝐼) |
| 45 | eqidd 2734 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)) | |
| 46 | 45, 38 | srasca 21123 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 47 | 44, 46 | eqtr3d 2770 | . . . 4 ⊢ (𝜑 → 𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 48 | 43 | sdrgdrng 20714 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing) |
| 49 | 7, 48 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ DivRing) |
| 50 | 47, 49 | eqeltrrd 2834 | . . 3 ⊢ (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing) |
| 51 | 30 | sralmod 21130 | . . . . . . 7 ⊢ (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 52 | 29, 51 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 53 | 1 | islvec 21047 | . . . . . 6 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)) |
| 54 | 52, 50, 53 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec) |
| 55 | dimcl 33687 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) | |
| 56 | 54, 55 | syl 17 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) |
| 57 | fldextrspunfld.7 | . . . 4 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 58 | fldextrspunfld.k | . . . . 5 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 59 | fldextrspunfld.j | . . . . 5 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 60 | fldextrspunfld.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 61 | fldextrspunfld.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 62 | 58, 43, 59, 3, 60, 61, 7, 11, 57, 15, 17, 2 | fldextrspunlem1 33760 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) |
| 63 | xnn0lenn0nn0 13151 | . . . 4 ⊢ (((dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0* ∧ (𝐽[:]𝐾) ∈ ℕ0 ∧ (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) | |
| 64 | 56, 57, 62, 63 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) |
| 65 | 1, 32, 39, 50, 64 | assafld 33722 | . 2 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ Field) |
| 66 | 45, 38 | srabase 21120 | . . . 4 ⊢ (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 67 | 37, 66 | eqtrd 2768 | . . 3 ⊢ (𝜑 → 𝐶 = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 68 | 45, 38 | sraaddg 21121 | . . . 4 ⊢ (𝜑 → (+g‘𝐸) = (+g‘((subringAlg ‘𝐸)‘𝐺))) |
| 69 | 68 | oveqdr 7383 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐸)𝑦) = (𝑥(+g‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 70 | 45, 38 | sramulr 21122 | . . . 4 ⊢ (𝜑 → (.r‘𝐸) = (.r‘((subringAlg ‘𝐸)‘𝐺))) |
| 71 | 70 | oveqdr 7383 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐸)𝑦) = (𝑥(.r‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 72 | 37, 67, 69, 71 | fldpropd 20694 | . 2 ⊢ (𝜑 → (𝐸 ∈ Field ↔ ((subringAlg ‘𝐸)‘𝐺) ∈ Field)) |
| 73 | 65, 72 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸 ∈ Field) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ≤ cle 11158 ℕ0cn0 12392 ℕ0*cxnn0 12465 Basecbs 17127 ↾s cress 17148 +gcplusg 17168 .rcmulr 17169 Scalarcsca 17171 CRingccrg 20160 SubRingcsubrg 20493 RingSpancrgspn 20534 IDomncidom 20617 DivRingcdr 20653 Fieldcfield 20654 SubDRingcsdrg 20710 LModclmod 20802 LVecclvec 21045 subringAlg csra 21114 AssAlgcasa 21796 dimcldim 33683 [:]cextdg 33725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9489 ax-inf2 9542 ax-ac2 10365 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-rpss 7665 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-inf 9338 df-oi 9407 df-r1 9668 df-rank 9669 df-dju 9805 df-card 9843 df-acn 9846 df-ac 10018 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-xadd 13018 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-word 14428 df-lsw 14477 df-concat 14485 df-s1 14511 df-substr 14556 df-pfx 14586 df-s2 14762 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-sum 15601 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ocomp 17189 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-mri 17498 df-acs 17499 df-proset 18208 df-drs 18209 df-poset 18227 df-ipo 18442 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cntr 19238 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-nzr 20437 df-subrng 20470 df-subrg 20494 df-rgspn 20535 df-rlreg 20618 df-domn 20619 df-idom 20620 df-drng 20655 df-field 20656 df-sdrg 20711 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lmhm 20965 df-lmim 20966 df-lbs 21018 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-cnfld 21301 df-zring 21393 df-dsmm 21678 df-frlm 21693 df-uvc 21729 df-lindf 21752 df-linds 21753 df-assa 21799 df-ind 32858 df-dim 33684 df-fldext 33726 df-extdg 33727 |
| This theorem is referenced by: fldextrspunlem2 33762 fldextrspundgdvdslem 33765 fldextrspundgdvds 33766 |
| Copyright terms: Public domain | W3C validator |