| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunfld | Structured version Visualization version GIF version | ||
| Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
| fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
| fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
| Ref | Expression |
|---|---|
| fldextrspunfld | ⊢ (𝜑 → 𝐸 ∈ Field) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)) | |
| 2 | fldextrspunfld.e | . . . . . 6 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
| 3 | fldextrspunfld.2 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 4 | 3 | flddrngd 20656 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 5 | 4 | drngringd 20652 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ Ring) |
| 6 | eqidd 2731 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 7 | fldextrspunfld.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 8 | eqid 2730 | . . . . . . . . . . 11 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 9 | 8 | sdrgss 20708 | . . . . . . . . . 10 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 10 | 7, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 11 | fldextrspunfld.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 12 | 8 | sdrgss 20708 | . . . . . . . . . 10 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 14 | 10, 13 | unssd 4157 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 15 | fldextrspunfld.n | . . . . . . . . 9 ⊢ 𝑁 = (RingSpan‘𝐿) | |
| 16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
| 17 | fldextrspunfld.c | . . . . . . . . 9 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
| 19 | 5, 6, 14, 16, 18 | rgspncl 20528 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
| 20 | 3, 19 | subrfld 33243 | . . . . . 6 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ IDomn) |
| 21 | 2, 20 | eqeltrid 2833 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ IDomn) |
| 22 | 21 | idomcringd 20642 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 23 | sdrgsubrg 20706 | . . . . . 6 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿)) | |
| 24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐿)) |
| 25 | 5, 6, 14, 16, 18 | rgspnssid 20529 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
| 26 | 25 | unssad 4158 | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| 27 | 2 | subsubrg 20513 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶))) |
| 28 | 27 | biimpar 477 | . . . . 5 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶)) → 𝐺 ∈ (SubRing‘𝐸)) |
| 29 | 19, 24, 26, 28 | syl12anc 836 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐸)) |
| 30 | eqid 2730 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺) | |
| 31 | 30 | sraassa 21784 | . . . 4 ⊢ ((𝐸 ∈ CRing ∧ 𝐺 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 32 | 22, 29, 31 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 33 | eqid 2730 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 34 | 8 | subrgss 20487 | . . . . . . 7 ⊢ (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿)) |
| 35 | 19, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐿)) |
| 36 | 2, 8 | ressbas2 17214 | . . . . . 6 ⊢ (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸)) |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 = (Base‘𝐸)) |
| 38 | 26, 37 | sseqtrd 3985 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐸)) |
| 39 | 30, 33, 21, 38 | sraidom 33585 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ IDomn) |
| 40 | ressabs 17224 | . . . . . . 7 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶) → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) | |
| 41 | 19, 26, 40 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) |
| 42 | 2 | oveq1i 7399 | . . . . . 6 ⊢ (𝐸 ↾s 𝐺) = ((𝐿 ↾s 𝐶) ↾s 𝐺) |
| 43 | fldextrspunfld.i | . . . . . 6 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 44 | 41, 42, 43 | 3eqtr4g 2790 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = 𝐼) |
| 45 | eqidd 2731 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)) | |
| 46 | 45, 38 | srasca 21093 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 47 | 44, 46 | eqtr3d 2767 | . . . 4 ⊢ (𝜑 → 𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 48 | 43 | sdrgdrng 20705 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing) |
| 49 | 7, 48 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ DivRing) |
| 50 | 47, 49 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing) |
| 51 | 30 | sralmod 21100 | . . . . . . 7 ⊢ (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 52 | 29, 51 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 53 | 1 | islvec 21017 | . . . . . 6 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)) |
| 54 | 52, 50, 53 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec) |
| 55 | dimcl 33604 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) | |
| 56 | 54, 55 | syl 17 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) |
| 57 | fldextrspunfld.7 | . . . 4 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 58 | fldextrspunfld.k | . . . . 5 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 59 | fldextrspunfld.j | . . . . 5 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 60 | fldextrspunfld.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 61 | fldextrspunfld.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 62 | 58, 43, 59, 3, 60, 61, 7, 11, 57, 15, 17, 2 | fldextrspunlem1 33676 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) |
| 63 | xnn0lenn0nn0 13211 | . . . 4 ⊢ (((dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0* ∧ (𝐽[:]𝐾) ∈ ℕ0 ∧ (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) | |
| 64 | 56, 57, 62, 63 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) |
| 65 | 1, 32, 39, 50, 64 | assafld 33639 | . 2 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ Field) |
| 66 | 45, 38 | srabase 21090 | . . . 4 ⊢ (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 67 | 37, 66 | eqtrd 2765 | . . 3 ⊢ (𝜑 → 𝐶 = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 68 | 45, 38 | sraaddg 21091 | . . . 4 ⊢ (𝜑 → (+g‘𝐸) = (+g‘((subringAlg ‘𝐸)‘𝐺))) |
| 69 | 68 | oveqdr 7417 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐸)𝑦) = (𝑥(+g‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 70 | 45, 38 | sramulr 21092 | . . . 4 ⊢ (𝜑 → (.r‘𝐸) = (.r‘((subringAlg ‘𝐸)‘𝐺))) |
| 71 | 70 | oveqdr 7417 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐸)𝑦) = (𝑥(.r‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 72 | 37, 67, 69, 71 | fldpropd 20685 | . 2 ⊢ (𝜑 → (𝐸 ∈ Field ↔ ((subringAlg ‘𝐸)‘𝐺) ∈ Field)) |
| 73 | 65, 72 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸 ∈ Field) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 ⊆ wss 3916 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ≤ cle 11215 ℕ0cn0 12448 ℕ0*cxnn0 12521 Basecbs 17185 ↾s cress 17206 +gcplusg 17226 .rcmulr 17227 Scalarcsca 17229 CRingccrg 20149 SubRingcsubrg 20484 RingSpancrgspn 20525 IDomncidom 20608 DivRingcdr 20644 Fieldcfield 20645 SubDRingcsdrg 20701 LModclmod 20772 LVecclvec 21015 subringAlg csra 21084 AssAlgcasa 21765 dimcldim 33600 [:]cextdg 33642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-reg 9551 ax-inf2 9600 ax-ac2 10422 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-rpss 7701 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-inf 9400 df-oi 9469 df-r1 9723 df-rank 9724 df-dju 9860 df-card 9898 df-acn 9901 df-ac 10075 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-xadd 13079 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-word 14485 df-lsw 14534 df-concat 14542 df-s1 14567 df-substr 14612 df-pfx 14642 df-s2 14820 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-sum 15659 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ocomp 17247 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-mri 17555 df-acs 17556 df-proset 18261 df-drs 18262 df-poset 18280 df-ipo 18493 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cntr 19256 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rgspn 20526 df-rlreg 20609 df-domn 20610 df-idom 20611 df-drng 20646 df-field 20647 df-sdrg 20702 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lmhm 20935 df-lmim 20936 df-lbs 20988 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-cnfld 21271 df-zring 21363 df-dsmm 21647 df-frlm 21662 df-uvc 21698 df-lindf 21721 df-linds 21722 df-assa 21768 df-ind 32780 df-dim 33601 df-fldext 33643 df-extdg 33644 |
| This theorem is referenced by: fldextrspunlem2 33678 fldextrspundgdvdslem 33681 fldextrspundgdvds 33682 |
| Copyright terms: Public domain | W3C validator |