| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunfld | Structured version Visualization version GIF version | ||
| Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
| fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
| fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
| Ref | Expression |
|---|---|
| fldextrspunfld | ⊢ (𝜑 → 𝐸 ∈ Field) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)) | |
| 2 | fldextrspunfld.e | . . . . . 6 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
| 3 | fldextrspunfld.2 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 4 | 3 | flddrngd 20645 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 5 | 4 | drngringd 20641 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ Ring) |
| 6 | eqidd 2730 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 7 | fldextrspunfld.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 8 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 9 | 8 | sdrgss 20697 | . . . . . . . . . 10 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 10 | 7, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 11 | fldextrspunfld.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 12 | 8 | sdrgss 20697 | . . . . . . . . . 10 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 14 | 10, 13 | unssd 4145 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 15 | fldextrspunfld.n | . . . . . . . . 9 ⊢ 𝑁 = (RingSpan‘𝐿) | |
| 16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
| 17 | fldextrspunfld.c | . . . . . . . . 9 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
| 19 | 5, 6, 14, 16, 18 | rgspncl 20517 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
| 20 | 3, 19 | subrfld 33245 | . . . . . 6 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ IDomn) |
| 21 | 2, 20 | eqeltrid 2832 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ IDomn) |
| 22 | 21 | idomcringd 20631 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 23 | sdrgsubrg 20695 | . . . . . 6 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿)) | |
| 24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐿)) |
| 25 | 5, 6, 14, 16, 18 | rgspnssid 20518 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
| 26 | 25 | unssad 4146 | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| 27 | 2 | subsubrg 20502 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶))) |
| 28 | 27 | biimpar 477 | . . . . 5 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶)) → 𝐺 ∈ (SubRing‘𝐸)) |
| 29 | 19, 24, 26, 28 | syl12anc 836 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐸)) |
| 30 | eqid 2729 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺) | |
| 31 | 30 | sraassa 21795 | . . . 4 ⊢ ((𝐸 ∈ CRing ∧ 𝐺 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 32 | 22, 29, 31 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 33 | eqid 2729 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 34 | 8 | subrgss 20476 | . . . . . . 7 ⊢ (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿)) |
| 35 | 19, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐿)) |
| 36 | 2, 8 | ressbas2 17168 | . . . . . 6 ⊢ (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸)) |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 = (Base‘𝐸)) |
| 38 | 26, 37 | sseqtrd 3974 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐸)) |
| 39 | 30, 33, 21, 38 | sraidom 33568 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ IDomn) |
| 40 | ressabs 17178 | . . . . . . 7 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶) → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) | |
| 41 | 19, 26, 40 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) |
| 42 | 2 | oveq1i 7363 | . . . . . 6 ⊢ (𝐸 ↾s 𝐺) = ((𝐿 ↾s 𝐶) ↾s 𝐺) |
| 43 | fldextrspunfld.i | . . . . . 6 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 44 | 41, 42, 43 | 3eqtr4g 2789 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = 𝐼) |
| 45 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)) | |
| 46 | 45, 38 | srasca 21103 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 47 | 44, 46 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → 𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 48 | 43 | sdrgdrng 20694 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing) |
| 49 | 7, 48 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ DivRing) |
| 50 | 47, 49 | eqeltrrd 2829 | . . 3 ⊢ (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing) |
| 51 | 30 | sralmod 21110 | . . . . . . 7 ⊢ (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 52 | 29, 51 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 53 | 1 | islvec 21027 | . . . . . 6 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)) |
| 54 | 52, 50, 53 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec) |
| 55 | dimcl 33588 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) | |
| 56 | 54, 55 | syl 17 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) |
| 57 | fldextrspunfld.7 | . . . 4 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 58 | fldextrspunfld.k | . . . . 5 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 59 | fldextrspunfld.j | . . . . 5 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 60 | fldextrspunfld.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 61 | fldextrspunfld.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 62 | 58, 43, 59, 3, 60, 61, 7, 11, 57, 15, 17, 2 | fldextrspunlem1 33661 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) |
| 63 | xnn0lenn0nn0 13166 | . . . 4 ⊢ (((dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0* ∧ (𝐽[:]𝐾) ∈ ℕ0 ∧ (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) | |
| 64 | 56, 57, 62, 63 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) |
| 65 | 1, 32, 39, 50, 64 | assafld 33623 | . 2 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ Field) |
| 66 | 45, 38 | srabase 21100 | . . . 4 ⊢ (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 67 | 37, 66 | eqtrd 2764 | . . 3 ⊢ (𝜑 → 𝐶 = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 68 | 45, 38 | sraaddg 21101 | . . . 4 ⊢ (𝜑 → (+g‘𝐸) = (+g‘((subringAlg ‘𝐸)‘𝐺))) |
| 69 | 68 | oveqdr 7381 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐸)𝑦) = (𝑥(+g‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 70 | 45, 38 | sramulr 21102 | . . . 4 ⊢ (𝜑 → (.r‘𝐸) = (.r‘((subringAlg ‘𝐸)‘𝐺))) |
| 71 | 70 | oveqdr 7381 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐸)𝑦) = (𝑥(.r‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 72 | 37, 67, 69, 71 | fldpropd 20674 | . 2 ⊢ (𝜑 → (𝐸 ∈ Field ↔ ((subringAlg ‘𝐸)‘𝐺) ∈ Field)) |
| 73 | 65, 72 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸 ∈ Field) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ≤ cle 11169 ℕ0cn0 12403 ℕ0*cxnn0 12476 Basecbs 17139 ↾s cress 17160 +gcplusg 17180 .rcmulr 17181 Scalarcsca 17183 CRingccrg 20138 SubRingcsubrg 20473 RingSpancrgspn 20514 IDomncidom 20597 DivRingcdr 20633 Fieldcfield 20634 SubDRingcsdrg 20690 LModclmod 20782 LVecclvec 21025 subringAlg csra 21094 AssAlgcasa 21776 dimcldim 33584 [:]cextdg 33626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-rp 12913 df-xadd 13034 df-fz 13430 df-fzo 13577 df-seq 13928 df-exp 13988 df-hash 14257 df-word 14440 df-lsw 14489 df-concat 14497 df-s1 14522 df-substr 14567 df-pfx 14597 df-s2 14774 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-sum 15613 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ocomp 17201 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-0g 17364 df-gsum 17365 df-prds 17370 df-pws 17372 df-mre 17507 df-mrc 17508 df-mri 17509 df-acs 17510 df-proset 18219 df-drs 18220 df-poset 18238 df-ipo 18453 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-mulg 18966 df-subg 19021 df-ghm 19111 df-cntz 19215 df-cntr 19216 df-lsm 19534 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-cring 20140 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-nzr 20417 df-subrng 20450 df-subrg 20474 df-rgspn 20515 df-rlreg 20598 df-domn 20599 df-idom 20600 df-drng 20635 df-field 20636 df-sdrg 20691 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lmhm 20945 df-lmim 20946 df-lbs 20998 df-lvec 21026 df-sra 21096 df-rgmod 21097 df-cnfld 21281 df-zring 21373 df-dsmm 21658 df-frlm 21673 df-uvc 21709 df-lindf 21732 df-linds 21733 df-assa 21779 df-ind 32813 df-dim 33585 df-fldext 33627 df-extdg 33628 |
| This theorem is referenced by: fldextrspunlem2 33663 fldextrspundgdvdslem 33666 fldextrspundgdvds 33667 |
| Copyright terms: Public domain | W3C validator |