| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspunfld | Structured version Visualization version GIF version | ||
| Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspunfld.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspunfld.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspunfld.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspunfld.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspunfld.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspunfld.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspunfld.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspunfld.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspunfld.n | ⊢ 𝑁 = (RingSpan‘𝐿) |
| fldextrspunfld.c | ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) |
| fldextrspunfld.e | ⊢ 𝐸 = (𝐿 ↾s 𝐶) |
| Ref | Expression |
|---|---|
| fldextrspunfld | ⊢ (𝜑 → 𝐸 ∈ Field) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)) | |
| 2 | fldextrspunfld.e | . . . . . 6 ⊢ 𝐸 = (𝐿 ↾s 𝐶) | |
| 3 | fldextrspunfld.2 | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 4 | 3 | flddrngd 20651 | . . . . . . . . 9 ⊢ (𝜑 → 𝐿 ∈ DivRing) |
| 5 | 4 | drngringd 20647 | . . . . . . . 8 ⊢ (𝜑 → 𝐿 ∈ Ring) |
| 6 | eqidd 2732 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐿) = (Base‘𝐿)) | |
| 7 | fldextrspunfld.5 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 8 | eqid 2731 | . . . . . . . . . . 11 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 9 | 8 | sdrgss 20703 | . . . . . . . . . 10 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿)) |
| 10 | 7, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐿)) |
| 11 | fldextrspunfld.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 12 | 8 | sdrgss 20703 | . . . . . . . . . 10 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 14 | 10, 13 | unssd 4137 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ (Base‘𝐿)) |
| 15 | fldextrspunfld.n | . . . . . . . . 9 ⊢ 𝑁 = (RingSpan‘𝐿) | |
| 16 | 15 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝐿)) |
| 17 | fldextrspunfld.c | . . . . . . . . 9 ⊢ 𝐶 = (𝑁‘(𝐺 ∪ 𝐻)) | |
| 18 | 17 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = (𝑁‘(𝐺 ∪ 𝐻))) |
| 19 | 5, 6, 14, 16, 18 | rgspncl 20523 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝐿)) |
| 20 | 3, 19 | subrfld 33245 | . . . . . 6 ⊢ (𝜑 → (𝐿 ↾s 𝐶) ∈ IDomn) |
| 21 | 2, 20 | eqeltrid 2835 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ IDomn) |
| 22 | 21 | idomcringd 20637 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 23 | sdrgsubrg 20701 | . . . . . 6 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿)) | |
| 24 | 7, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐿)) |
| 25 | 5, 6, 14, 16, 18 | rgspnssid 20524 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∪ 𝐻) ⊆ 𝐶) |
| 26 | 25 | unssad 4138 | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| 27 | 2 | subsubrg 20508 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶))) |
| 28 | 27 | biimpar 477 | . . . . 5 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶)) → 𝐺 ∈ (SubRing‘𝐸)) |
| 29 | 19, 24, 26, 28 | syl12anc 836 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubRing‘𝐸)) |
| 30 | eqid 2731 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺) | |
| 31 | 30 | sraassa 21801 | . . . 4 ⊢ ((𝐸 ∈ CRing ∧ 𝐺 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 32 | 22, 29, 31 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg) |
| 33 | eqid 2731 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 34 | 8 | subrgss 20482 | . . . . . . 7 ⊢ (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿)) |
| 35 | 19, 34 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐿)) |
| 36 | 2, 8 | ressbas2 17144 | . . . . . 6 ⊢ (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸)) |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 = (Base‘𝐸)) |
| 38 | 26, 37 | sseqtrd 3966 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ (Base‘𝐸)) |
| 39 | 30, 33, 21, 38 | sraidom 33587 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ IDomn) |
| 40 | ressabs 17154 | . . . . . . 7 ⊢ ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺 ⊆ 𝐶) → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) | |
| 41 | 19, 26, 40 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐿 ↾s 𝐶) ↾s 𝐺) = (𝐿 ↾s 𝐺)) |
| 42 | 2 | oveq1i 7351 | . . . . . 6 ⊢ (𝐸 ↾s 𝐺) = ((𝐿 ↾s 𝐶) ↾s 𝐺) |
| 43 | fldextrspunfld.i | . . . . . 6 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 44 | 41, 42, 43 | 3eqtr4g 2791 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = 𝐼) |
| 45 | eqidd 2732 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)) | |
| 46 | 45, 38 | srasca 21109 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 47 | 44, 46 | eqtr3d 2768 | . . . 4 ⊢ (𝜑 → 𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺))) |
| 48 | 43 | sdrgdrng 20700 | . . . . 5 ⊢ (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing) |
| 49 | 7, 48 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ DivRing) |
| 50 | 47, 49 | eqeltrrd 2832 | . . 3 ⊢ (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing) |
| 51 | 30 | sralmod 21116 | . . . . . . 7 ⊢ (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 52 | 29, 51 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod) |
| 53 | 1 | islvec 21033 | . . . . . 6 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)) |
| 54 | 52, 50, 53 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec) |
| 55 | dimcl 33607 | . . . . 5 ⊢ (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) | |
| 56 | 54, 55 | syl 17 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*) |
| 57 | fldextrspunfld.7 | . . . 4 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 58 | fldextrspunfld.k | . . . . 5 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 59 | fldextrspunfld.j | . . . . 5 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 60 | fldextrspunfld.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 61 | fldextrspunfld.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 62 | 58, 43, 59, 3, 60, 61, 7, 11, 57, 15, 17, 2 | fldextrspunlem1 33680 | . . . 4 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) |
| 63 | xnn0lenn0nn0 13139 | . . . 4 ⊢ (((dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0* ∧ (𝐽[:]𝐾) ∈ ℕ0 ∧ (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) | |
| 64 | 56, 57, 62, 63 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0) |
| 65 | 1, 32, 39, 50, 64 | assafld 33642 | . 2 ⊢ (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ Field) |
| 66 | 45, 38 | srabase 21106 | . . . 4 ⊢ (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 67 | 37, 66 | eqtrd 2766 | . . 3 ⊢ (𝜑 → 𝐶 = (Base‘((subringAlg ‘𝐸)‘𝐺))) |
| 68 | 45, 38 | sraaddg 21107 | . . . 4 ⊢ (𝜑 → (+g‘𝐸) = (+g‘((subringAlg ‘𝐸)‘𝐺))) |
| 69 | 68 | oveqdr 7369 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐸)𝑦) = (𝑥(+g‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 70 | 45, 38 | sramulr 21108 | . . . 4 ⊢ (𝜑 → (.r‘𝐸) = (.r‘((subringAlg ‘𝐸)‘𝐺))) |
| 71 | 70 | oveqdr 7369 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐸)𝑦) = (𝑥(.r‘((subringAlg ‘𝐸)‘𝐺))𝑦)) |
| 72 | 37, 67, 69, 71 | fldpropd 20680 | . 2 ⊢ (𝜑 → (𝐸 ∈ Field ↔ ((subringAlg ‘𝐸)‘𝐺) ∈ Field)) |
| 73 | 65, 72 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸 ∈ Field) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ≤ cle 11142 ℕ0cn0 12376 ℕ0*cxnn0 12449 Basecbs 17115 ↾s cress 17136 +gcplusg 17156 .rcmulr 17157 Scalarcsca 17159 CRingccrg 20147 SubRingcsubrg 20479 RingSpancrgspn 20520 IDomncidom 20603 DivRingcdr 20639 Fieldcfield 20640 SubDRingcsdrg 20696 LModclmod 20788 LVecclvec 21031 subringAlg csra 21100 AssAlgcasa 21782 dimcldim 33603 [:]cextdg 33645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10349 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-inf 9322 df-oi 9391 df-r1 9652 df-rank 9653 df-dju 9789 df-card 9827 df-acn 9830 df-ac 10002 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-xadd 13007 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-s2 14750 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ocomp 17177 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-mri 17485 df-acs 17486 df-proset 18195 df-drs 18196 df-poset 18214 df-ipo 18429 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cntr 19225 df-lsm 19543 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-nzr 20423 df-subrng 20456 df-subrg 20480 df-rgspn 20521 df-rlreg 20604 df-domn 20605 df-idom 20606 df-drng 20641 df-field 20642 df-sdrg 20697 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lmhm 20951 df-lmim 20952 df-lbs 21004 df-lvec 21032 df-sra 21102 df-rgmod 21103 df-cnfld 21287 df-zring 21379 df-dsmm 21664 df-frlm 21679 df-uvc 21715 df-lindf 21738 df-linds 21739 df-assa 21785 df-ind 32824 df-dim 33604 df-fldext 33646 df-extdg 33647 |
| This theorem is referenced by: fldextrspunlem2 33682 fldextrspundgdvdslem 33685 fldextrspundgdvds 33686 |
| Copyright terms: Public domain | W3C validator |