Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunfld Structured version   Visualization version   GIF version

Theorem fldextrspunfld 33677
Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunfld (𝜑𝐸 ∈ Field)

Proof of Theorem fldextrspunfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
2 fldextrspunfld.e . . . . . 6 𝐸 = (𝐿s 𝐶)
3 fldextrspunfld.2 . . . . . . 7 (𝜑𝐿 ∈ Field)
43flddrngd 20656 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
54drngringd 20652 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
6 eqidd 2731 . . . . . . . 8 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
7 fldextrspunfld.5 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubDRing‘𝐿))
8 eqid 2730 . . . . . . . . . . 11 (Base‘𝐿) = (Base‘𝐿)
98sdrgss 20708 . . . . . . . . . 10 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
107, 9syl 17 . . . . . . . . 9 (𝜑𝐺 ⊆ (Base‘𝐿))
11 fldextrspunfld.6 . . . . . . . . . 10 (𝜑𝐻 ∈ (SubDRing‘𝐿))
128sdrgss 20708 . . . . . . . . . 10 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
1311, 12syl 17 . . . . . . . . 9 (𝜑𝐻 ⊆ (Base‘𝐿))
1410, 13unssd 4157 . . . . . . . 8 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
15 fldextrspunfld.n . . . . . . . . 9 𝑁 = (RingSpan‘𝐿)
1615a1i 11 . . . . . . . 8 (𝜑𝑁 = (RingSpan‘𝐿))
17 fldextrspunfld.c . . . . . . . . 9 𝐶 = (𝑁‘(𝐺𝐻))
1817a1i 11 . . . . . . . 8 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
195, 6, 14, 16, 18rgspncl 20528 . . . . . . 7 (𝜑𝐶 ∈ (SubRing‘𝐿))
203, 19subrfld 33243 . . . . . 6 (𝜑 → (𝐿s 𝐶) ∈ IDomn)
212, 20eqeltrid 2833 . . . . 5 (𝜑𝐸 ∈ IDomn)
2221idomcringd 20642 . . . 4 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20706 . . . . . 6 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
247, 23syl 17 . . . . 5 (𝜑𝐺 ∈ (SubRing‘𝐿))
255, 6, 14, 16, 18rgspnssid 20529 . . . . . 6 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
2625unssad 4158 . . . . 5 (𝜑𝐺𝐶)
272subsubrg 20513 . . . . . 6 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
2827biimpar 477 . . . . 5 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
2919, 24, 26, 28syl12anc 836 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐸))
30 eqid 2730 . . . . 5 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
3130sraassa 21784 . . . 4 ((𝐸 ∈ CRing ∧ 𝐺 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg)
3222, 29, 31syl2anc 584 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg)
33 eqid 2730 . . . 4 (Base‘𝐸) = (Base‘𝐸)
348subrgss 20487 . . . . . . 7 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
3519, 34syl 17 . . . . . 6 (𝜑𝐶 ⊆ (Base‘𝐿))
362, 8ressbas2 17214 . . . . . 6 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
3735, 36syl 17 . . . . 5 (𝜑𝐶 = (Base‘𝐸))
3826, 37sseqtrd 3985 . . . 4 (𝜑𝐺 ⊆ (Base‘𝐸))
3930, 33, 21, 38sraidom 33585 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ IDomn)
40 ressabs 17224 . . . . . . 7 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
4119, 26, 40syl2anc 584 . . . . . 6 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
422oveq1i 7399 . . . . . 6 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
43 fldextrspunfld.i . . . . . 6 𝐼 = (𝐿s 𝐺)
4441, 42, 433eqtr4g 2790 . . . . 5 (𝜑 → (𝐸s 𝐺) = 𝐼)
45 eqidd 2731 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
4645, 38srasca 21093 . . . . 5 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
4744, 46eqtr3d 2767 . . . 4 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
4843sdrgdrng 20705 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
497, 48syl 17 . . . 4 (𝜑𝐼 ∈ DivRing)
5047, 49eqeltrrd 2830 . . 3 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
5130sralmod 21100 . . . . . . 7 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
5229, 51syl 17 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
531islvec 21017 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
5452, 50, 53sylanbrc 583 . . . . 5 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
55 dimcl 33604 . . . . 5 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*)
5654, 55syl 17 . . . 4 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*)
57 fldextrspunfld.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
58 fldextrspunfld.k . . . . 5 𝐾 = (𝐿s 𝐹)
59 fldextrspunfld.j . . . . 5 𝐽 = (𝐿s 𝐻)
60 fldextrspunfld.3 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐼))
61 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6258, 43, 59, 3, 60, 61, 7, 11, 57, 15, 17, 2fldextrspunlem1 33676 . . . 4 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
63 xnn0lenn0nn0 13211 . . . 4 (((dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0* ∧ (𝐽[:]𝐾) ∈ ℕ0 ∧ (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0)
6456, 57, 62, 63syl3anc 1373 . . 3 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0)
651, 32, 39, 50, 64assafld 33639 . 2 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ Field)
6645, 38srabase 21090 . . . 4 (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
6737, 66eqtrd 2765 . . 3 (𝜑𝐶 = (Base‘((subringAlg ‘𝐸)‘𝐺)))
6845, 38sraaddg 21091 . . . 4 (𝜑 → (+g𝐸) = (+g‘((subringAlg ‘𝐸)‘𝐺)))
6968oveqdr 7417 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐸)𝑦) = (𝑥(+g‘((subringAlg ‘𝐸)‘𝐺))𝑦))
7045, 38sramulr 21092 . . . 4 (𝜑 → (.r𝐸) = (.r‘((subringAlg ‘𝐸)‘𝐺)))
7170oveqdr 7417 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐸)𝑦) = (𝑥(.r‘((subringAlg ‘𝐸)‘𝐺))𝑦))
7237, 67, 69, 71fldpropd 20685 . 2 (𝜑 → (𝐸 ∈ Field ↔ ((subringAlg ‘𝐸)‘𝐺) ∈ Field))
7365, 72mpbird 257 1 (𝜑𝐸 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3914  wss 3916   class class class wbr 5109  cfv 6513  (class class class)co 7389  cle 11215  0cn0 12448  0*cxnn0 12521  Basecbs 17185  s cress 17206  +gcplusg 17226  .rcmulr 17227  Scalarcsca 17229  CRingccrg 20149  SubRingcsubrg 20484  RingSpancrgspn 20525  IDomncidom 20608  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  LModclmod 20772  LVecclvec 21015  subringAlg csra 21084  AssAlgcasa 21765  dimcldim 33600  [:]cextdg 33642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-rpss 7701  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-inf 9400  df-oi 9469  df-r1 9723  df-rank 9724  df-dju 9860  df-card 9898  df-acn 9901  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-xadd 13079  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-word 14485  df-lsw 14534  df-concat 14542  df-s1 14567  df-substr 14612  df-pfx 14642  df-s2 14820  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ocomp 17247  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-mri 17555  df-acs 17556  df-proset 18261  df-drs 18262  df-poset 18280  df-ipo 18493  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cntr 19256  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rgspn 20526  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lmhm 20935  df-lmim 20936  df-lbs 20988  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-cnfld 21271  df-zring 21363  df-dsmm 21647  df-frlm 21662  df-uvc 21698  df-lindf 21721  df-linds 21722  df-assa 21768  df-ind 32780  df-dim 33601  df-fldext 33643  df-extdg 33644
This theorem is referenced by:  fldextrspunlem2  33678  fldextrspundgdvdslem  33681  fldextrspundgdvds  33682
  Copyright terms: Public domain W3C validator