Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunfld Structured version   Visualization version   GIF version

Theorem fldextrspunfld 33662
Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunfld (𝜑𝐸 ∈ Field)

Proof of Theorem fldextrspunfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
2 fldextrspunfld.e . . . . . 6 𝐸 = (𝐿s 𝐶)
3 fldextrspunfld.2 . . . . . . 7 (𝜑𝐿 ∈ Field)
43flddrngd 20645 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
54drngringd 20641 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
6 eqidd 2730 . . . . . . . 8 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
7 fldextrspunfld.5 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubDRing‘𝐿))
8 eqid 2729 . . . . . . . . . . 11 (Base‘𝐿) = (Base‘𝐿)
98sdrgss 20697 . . . . . . . . . 10 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
107, 9syl 17 . . . . . . . . 9 (𝜑𝐺 ⊆ (Base‘𝐿))
11 fldextrspunfld.6 . . . . . . . . . 10 (𝜑𝐻 ∈ (SubDRing‘𝐿))
128sdrgss 20697 . . . . . . . . . 10 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
1311, 12syl 17 . . . . . . . . 9 (𝜑𝐻 ⊆ (Base‘𝐿))
1410, 13unssd 4145 . . . . . . . 8 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
15 fldextrspunfld.n . . . . . . . . 9 𝑁 = (RingSpan‘𝐿)
1615a1i 11 . . . . . . . 8 (𝜑𝑁 = (RingSpan‘𝐿))
17 fldextrspunfld.c . . . . . . . . 9 𝐶 = (𝑁‘(𝐺𝐻))
1817a1i 11 . . . . . . . 8 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
195, 6, 14, 16, 18rgspncl 20517 . . . . . . 7 (𝜑𝐶 ∈ (SubRing‘𝐿))
203, 19subrfld 33245 . . . . . 6 (𝜑 → (𝐿s 𝐶) ∈ IDomn)
212, 20eqeltrid 2832 . . . . 5 (𝜑𝐸 ∈ IDomn)
2221idomcringd 20631 . . . 4 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20695 . . . . . 6 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
247, 23syl 17 . . . . 5 (𝜑𝐺 ∈ (SubRing‘𝐿))
255, 6, 14, 16, 18rgspnssid 20518 . . . . . 6 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
2625unssad 4146 . . . . 5 (𝜑𝐺𝐶)
272subsubrg 20502 . . . . . 6 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
2827biimpar 477 . . . . 5 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
2919, 24, 26, 28syl12anc 836 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐸))
30 eqid 2729 . . . . 5 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
3130sraassa 21795 . . . 4 ((𝐸 ∈ CRing ∧ 𝐺 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg)
3222, 29, 31syl2anc 584 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg)
33 eqid 2729 . . . 4 (Base‘𝐸) = (Base‘𝐸)
348subrgss 20476 . . . . . . 7 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
3519, 34syl 17 . . . . . 6 (𝜑𝐶 ⊆ (Base‘𝐿))
362, 8ressbas2 17168 . . . . . 6 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
3735, 36syl 17 . . . . 5 (𝜑𝐶 = (Base‘𝐸))
3826, 37sseqtrd 3974 . . . 4 (𝜑𝐺 ⊆ (Base‘𝐸))
3930, 33, 21, 38sraidom 33568 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ IDomn)
40 ressabs 17178 . . . . . . 7 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
4119, 26, 40syl2anc 584 . . . . . 6 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
422oveq1i 7363 . . . . . 6 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
43 fldextrspunfld.i . . . . . 6 𝐼 = (𝐿s 𝐺)
4441, 42, 433eqtr4g 2789 . . . . 5 (𝜑 → (𝐸s 𝐺) = 𝐼)
45 eqidd 2730 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
4645, 38srasca 21103 . . . . 5 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
4744, 46eqtr3d 2766 . . . 4 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
4843sdrgdrng 20694 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
497, 48syl 17 . . . 4 (𝜑𝐼 ∈ DivRing)
5047, 49eqeltrrd 2829 . . 3 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
5130sralmod 21110 . . . . . . 7 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
5229, 51syl 17 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
531islvec 21027 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
5452, 50, 53sylanbrc 583 . . . . 5 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
55 dimcl 33588 . . . . 5 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*)
5654, 55syl 17 . . . 4 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*)
57 fldextrspunfld.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
58 fldextrspunfld.k . . . . 5 𝐾 = (𝐿s 𝐹)
59 fldextrspunfld.j . . . . 5 𝐽 = (𝐿s 𝐻)
60 fldextrspunfld.3 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐼))
61 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6258, 43, 59, 3, 60, 61, 7, 11, 57, 15, 17, 2fldextrspunlem1 33661 . . . 4 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
63 xnn0lenn0nn0 13166 . . . 4 (((dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0* ∧ (𝐽[:]𝐾) ∈ ℕ0 ∧ (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0)
6456, 57, 62, 63syl3anc 1373 . . 3 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0)
651, 32, 39, 50, 64assafld 33623 . 2 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ Field)
6645, 38srabase 21100 . . . 4 (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
6737, 66eqtrd 2764 . . 3 (𝜑𝐶 = (Base‘((subringAlg ‘𝐸)‘𝐺)))
6845, 38sraaddg 21101 . . . 4 (𝜑 → (+g𝐸) = (+g‘((subringAlg ‘𝐸)‘𝐺)))
6968oveqdr 7381 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐸)𝑦) = (𝑥(+g‘((subringAlg ‘𝐸)‘𝐺))𝑦))
7045, 38sramulr 21102 . . . 4 (𝜑 → (.r𝐸) = (.r‘((subringAlg ‘𝐸)‘𝐺)))
7170oveqdr 7381 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐸)𝑦) = (𝑥(.r‘((subringAlg ‘𝐸)‘𝐺))𝑦))
7237, 67, 69, 71fldpropd 20674 . 2 (𝜑 → (𝐸 ∈ Field ↔ ((subringAlg ‘𝐸)‘𝐺) ∈ Field))
7365, 72mpbird 257 1 (𝜑𝐸 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3903  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  cle 11169  0cn0 12403  0*cxnn0 12476  Basecbs 17139  s cress 17160  +gcplusg 17180  .rcmulr 17181  Scalarcsca 17183  CRingccrg 20138  SubRingcsubrg 20473  RingSpancrgspn 20514  IDomncidom 20597  DivRingcdr 20633  Fieldcfield 20634  SubDRingcsdrg 20690  LModclmod 20782  LVecclvec 21025  subringAlg csra 21094  AssAlgcasa 21776  dimcldim 33584  [:]cextdg 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-xadd 13034  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-word 14440  df-lsw 14489  df-concat 14497  df-s1 14522  df-substr 14567  df-pfx 14597  df-s2 14774  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ocomp 17201  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-0g 17364  df-gsum 17365  df-prds 17370  df-pws 17372  df-mre 17507  df-mrc 17508  df-mri 17509  df-acs 17510  df-proset 18219  df-drs 18220  df-poset 18238  df-ipo 18453  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-cntr 19216  df-lsm 19534  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-nzr 20417  df-subrng 20450  df-subrg 20474  df-rgspn 20515  df-rlreg 20598  df-domn 20599  df-idom 20600  df-drng 20635  df-field 20636  df-sdrg 20691  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lmhm 20945  df-lmim 20946  df-lbs 20998  df-lvec 21026  df-sra 21096  df-rgmod 21097  df-cnfld 21281  df-zring 21373  df-dsmm 21658  df-frlm 21673  df-uvc 21709  df-lindf 21732  df-linds 21733  df-assa 21779  df-ind 32813  df-dim 33585  df-fldext 33627  df-extdg 33628
This theorem is referenced by:  fldextrspunlem2  33663  fldextrspundgdvdslem  33666  fldextrspundgdvds  33667
  Copyright terms: Public domain W3C validator