Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspunfld Structured version   Visualization version   GIF version

Theorem fldextrspunfld 33668
Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of [BourbakiAlg2] p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
fldextrspunfld.k 𝐾 = (𝐿s 𝐹)
fldextrspunfld.i 𝐼 = (𝐿s 𝐺)
fldextrspunfld.j 𝐽 = (𝐿s 𝐻)
fldextrspunfld.2 (𝜑𝐿 ∈ Field)
fldextrspunfld.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspunfld.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspunfld.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspunfld.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspunfld.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspunfld.n 𝑁 = (RingSpan‘𝐿)
fldextrspunfld.c 𝐶 = (𝑁‘(𝐺𝐻))
fldextrspunfld.e 𝐸 = (𝐿s 𝐶)
Assertion
Ref Expression
fldextrspunfld (𝜑𝐸 ∈ Field)

Proof of Theorem fldextrspunfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (Scalar‘((subringAlg ‘𝐸)‘𝐺)) = (Scalar‘((subringAlg ‘𝐸)‘𝐺))
2 fldextrspunfld.e . . . . . 6 𝐸 = (𝐿s 𝐶)
3 fldextrspunfld.2 . . . . . . 7 (𝜑𝐿 ∈ Field)
43flddrngd 20710 . . . . . . . . 9 (𝜑𝐿 ∈ DivRing)
54drngringd 20706 . . . . . . . 8 (𝜑𝐿 ∈ Ring)
6 eqidd 2735 . . . . . . . 8 (𝜑 → (Base‘𝐿) = (Base‘𝐿))
7 fldextrspunfld.5 . . . . . . . . . 10 (𝜑𝐺 ∈ (SubDRing‘𝐿))
8 eqid 2734 . . . . . . . . . . 11 (Base‘𝐿) = (Base‘𝐿)
98sdrgss 20763 . . . . . . . . . 10 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ⊆ (Base‘𝐿))
107, 9syl 17 . . . . . . . . 9 (𝜑𝐺 ⊆ (Base‘𝐿))
11 fldextrspunfld.6 . . . . . . . . . 10 (𝜑𝐻 ∈ (SubDRing‘𝐿))
128sdrgss 20763 . . . . . . . . . 10 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
1311, 12syl 17 . . . . . . . . 9 (𝜑𝐻 ⊆ (Base‘𝐿))
1410, 13unssd 4172 . . . . . . . 8 (𝜑 → (𝐺𝐻) ⊆ (Base‘𝐿))
15 fldextrspunfld.n . . . . . . . . 9 𝑁 = (RingSpan‘𝐿)
1615a1i 11 . . . . . . . 8 (𝜑𝑁 = (RingSpan‘𝐿))
17 fldextrspunfld.c . . . . . . . . 9 𝐶 = (𝑁‘(𝐺𝐻))
1817a1i 11 . . . . . . . 8 (𝜑𝐶 = (𝑁‘(𝐺𝐻)))
195, 6, 14, 16, 18rgspncl 20582 . . . . . . 7 (𝜑𝐶 ∈ (SubRing‘𝐿))
203, 19subrfld 33234 . . . . . 6 (𝜑 → (𝐿s 𝐶) ∈ IDomn)
212, 20eqeltrid 2837 . . . . 5 (𝜑𝐸 ∈ IDomn)
2221idomcringd 20696 . . . 4 (𝜑𝐸 ∈ CRing)
23 sdrgsubrg 20761 . . . . . 6 (𝐺 ∈ (SubDRing‘𝐿) → 𝐺 ∈ (SubRing‘𝐿))
247, 23syl 17 . . . . 5 (𝜑𝐺 ∈ (SubRing‘𝐿))
255, 6, 14, 16, 18rgspnssid 20583 . . . . . 6 (𝜑 → (𝐺𝐻) ⊆ 𝐶)
2625unssad 4173 . . . . 5 (𝜑𝐺𝐶)
272subsubrg 20567 . . . . . 6 (𝐶 ∈ (SubRing‘𝐿) → (𝐺 ∈ (SubRing‘𝐸) ↔ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)))
2827biimpar 477 . . . . 5 ((𝐶 ∈ (SubRing‘𝐿) ∧ (𝐺 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶)) → 𝐺 ∈ (SubRing‘𝐸))
2919, 24, 26, 28syl12anc 836 . . . 4 (𝜑𝐺 ∈ (SubRing‘𝐸))
30 eqid 2734 . . . . 5 ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺)
3130sraassa 21844 . . . 4 ((𝐸 ∈ CRing ∧ 𝐺 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg)
3222, 29, 31syl2anc 584 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ AssAlg)
33 eqid 2734 . . . 4 (Base‘𝐸) = (Base‘𝐸)
348subrgss 20541 . . . . . . 7 (𝐶 ∈ (SubRing‘𝐿) → 𝐶 ⊆ (Base‘𝐿))
3519, 34syl 17 . . . . . 6 (𝜑𝐶 ⊆ (Base‘𝐿))
362, 8ressbas2 17262 . . . . . 6 (𝐶 ⊆ (Base‘𝐿) → 𝐶 = (Base‘𝐸))
3735, 36syl 17 . . . . 5 (𝜑𝐶 = (Base‘𝐸))
3826, 37sseqtrd 4000 . . . 4 (𝜑𝐺 ⊆ (Base‘𝐸))
3930, 33, 21, 38sraidom 33574 . . 3 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ IDomn)
40 ressabs 17272 . . . . . . 7 ((𝐶 ∈ (SubRing‘𝐿) ∧ 𝐺𝐶) → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
4119, 26, 40syl2anc 584 . . . . . 6 (𝜑 → ((𝐿s 𝐶) ↾s 𝐺) = (𝐿s 𝐺))
422oveq1i 7423 . . . . . 6 (𝐸s 𝐺) = ((𝐿s 𝐶) ↾s 𝐺)
43 fldextrspunfld.i . . . . . 6 𝐼 = (𝐿s 𝐺)
4441, 42, 433eqtr4g 2794 . . . . 5 (𝜑 → (𝐸s 𝐺) = 𝐼)
45 eqidd 2735 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) = ((subringAlg ‘𝐸)‘𝐺))
4645, 38srasca 21148 . . . . 5 (𝜑 → (𝐸s 𝐺) = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
4744, 46eqtr3d 2771 . . . 4 (𝜑𝐼 = (Scalar‘((subringAlg ‘𝐸)‘𝐺)))
4843sdrgdrng 20760 . . . . 5 (𝐺 ∈ (SubDRing‘𝐿) → 𝐼 ∈ DivRing)
497, 48syl 17 . . . 4 (𝜑𝐼 ∈ DivRing)
5047, 49eqeltrrd 2834 . . 3 (𝜑 → (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing)
5130sralmod 21157 . . . . . . 7 (𝐺 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
5229, 51syl 17 . . . . . 6 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LMod)
531islvec 21072 . . . . . 6 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec ↔ (((subringAlg ‘𝐸)‘𝐺) ∈ LMod ∧ (Scalar‘((subringAlg ‘𝐸)‘𝐺)) ∈ DivRing))
5452, 50, 53sylanbrc 583 . . . . 5 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ LVec)
55 dimcl 33593 . . . . 5 (((subringAlg ‘𝐸)‘𝐺) ∈ LVec → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*)
5654, 55syl 17 . . . 4 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0*)
57 fldextrspunfld.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
58 fldextrspunfld.k . . . . 5 𝐾 = (𝐿s 𝐹)
59 fldextrspunfld.j . . . . 5 𝐽 = (𝐿s 𝐻)
60 fldextrspunfld.3 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐼))
61 fldextrspunfld.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
6258, 43, 59, 3, 60, 61, 7, 11, 57, 15, 17, 2fldextrspunlem1 33667 . . . 4 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾))
63 xnn0lenn0nn0 13269 . . . 4 (((dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0* ∧ (𝐽[:]𝐾) ∈ ℕ0 ∧ (dim‘((subringAlg ‘𝐸)‘𝐺)) ≤ (𝐽[:]𝐾)) → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0)
6456, 57, 62, 63syl3anc 1372 . . 3 (𝜑 → (dim‘((subringAlg ‘𝐸)‘𝐺)) ∈ ℕ0)
651, 32, 39, 50, 64assafld 33628 . 2 (𝜑 → ((subringAlg ‘𝐸)‘𝐺) ∈ Field)
6645, 38srabase 21145 . . . 4 (𝜑 → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘𝐺)))
6737, 66eqtrd 2769 . . 3 (𝜑𝐶 = (Base‘((subringAlg ‘𝐸)‘𝐺)))
6845, 38sraaddg 21146 . . . 4 (𝜑 → (+g𝐸) = (+g‘((subringAlg ‘𝐸)‘𝐺)))
6968oveqdr 7441 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐸)𝑦) = (𝑥(+g‘((subringAlg ‘𝐸)‘𝐺))𝑦))
7045, 38sramulr 21147 . . . 4 (𝜑 → (.r𝐸) = (.r‘((subringAlg ‘𝐸)‘𝐺)))
7170oveqdr 7441 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐸)𝑦) = (𝑥(.r‘((subringAlg ‘𝐸)‘𝐺))𝑦))
7237, 67, 69, 71fldpropd 20739 . 2 (𝜑 → (𝐸 ∈ Field ↔ ((subringAlg ‘𝐸)‘𝐺) ∈ Field))
7365, 72mpbird 257 1 (𝜑𝐸 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cun 3929  wss 3931   class class class wbr 5123  cfv 6541  (class class class)co 7413  cle 11278  0cn0 12509  0*cxnn0 12582  Basecbs 17230  s cress 17253  +gcplusg 17274  .rcmulr 17275  Scalarcsca 17277  CRingccrg 20200  SubRingcsubrg 20538  RingSpancrgspn 20579  IDomncidom 20662  DivRingcdr 20698  Fieldcfield 20699  SubDRingcsdrg 20756  LModclmod 20827  LVecclvec 21070  subringAlg csra 21139  AssAlgcasa 21825  dimcldim 33589  [:]cextdg 33632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-rpss 7725  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-inf 9465  df-oi 9532  df-r1 9786  df-rank 9787  df-dju 9923  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-xadd 13137  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-s2 14870  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ocomp 17295  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-mri 17603  df-acs 17604  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cntr 19306  df-lsm 19623  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-nzr 20482  df-subrng 20515  df-subrg 20539  df-rgspn 20580  df-rlreg 20663  df-domn 20664  df-idom 20665  df-drng 20700  df-field 20701  df-sdrg 20757  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lmhm 20990  df-lmim 20991  df-lbs 21043  df-lvec 21071  df-sra 21141  df-rgmod 21142  df-cnfld 21328  df-zring 21421  df-dsmm 21707  df-frlm 21722  df-uvc 21758  df-lindf 21781  df-linds 21782  df-assa 21828  df-ind 32781  df-dim 33590  df-fldext 33633  df-extdg 33634
This theorem is referenced by:  fldextrspunlem2  33669  fldextrspundgdvdslem  33672  fldextrspundgdvds  33673
  Copyright terms: Public domain W3C validator