Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem5 Structured version   Visualization version   GIF version

Theorem unitscyglem5 42200
Description: Lemma for unitscyg (Contributed by metakunt, 9-Aug-2025.)
Hypotheses
Ref Expression
unitscyglem5.1 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
unitscyglem5.2 (𝜑𝑅 ∈ IDomn)
unitscyglem5.3 (𝜑 → (Base‘𝑅) ∈ Fin)
unitscyglem5.4 (𝜑𝐷 ∈ ℕ)
unitscyglem5.5 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
Assertion
Ref Expression
unitscyglem5 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)

Proof of Theorem unitscyglem5
Dummy variables 𝑚 𝑜 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitscyglem5.4 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
21phicld 16809 . . . . . . 7 (𝜑 → (ϕ‘𝐷) ∈ ℕ)
3 eqid 2737 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2737 . . . . . . . . 9 (.g𝐺) = (.g𝐺)
5 unitscyglem5.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
65idomringd 20728 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
7 eqid 2737 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
8 unitscyglem5.1 . . . . . . . . . . 11 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
97, 8unitgrp 20383 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
106, 9syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
11 unitscyglem5.3 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) ∈ Fin)
12 eqid 2737 . . . . . . . . . . . . 13 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
138, 12ressbasss 17284 . . . . . . . . . . . 12 (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅))
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅)))
15 eqid 2737 . . . . . . . . . . . . . 14 (mulGrp‘𝑅) = (mulGrp‘𝑅)
16 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
1715, 16mgpbas 20142 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
1918eqimsscd 4041 . . . . . . . . . . 11 (𝜑 → (Base‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅))
2014, 19sstrd 3994 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ⊆ (Base‘𝑅))
2111, 20ssfid 9301 . . . . . . . . 9 (𝜑 → (Base‘𝐺) ∈ Fin)
2217eqcomi 2746 . . . . . . . . . . . . . . . . . . 19 (Base‘(mulGrp‘𝑅)) = (Base‘𝑅)
2322, 7unitss 20376 . . . . . . . . . . . . . . . . . 18 (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
278, 12ressbasssg 17282 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅)))
2827a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))))
29 inss1 4237 . . . . . . . . . . . . . . . . . . . 20 ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅)
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅))
3128, 30sstrd 3994 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐺) ⊆ (Unit‘𝑅))
3231adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ) → (Base‘𝐺) ⊆ (Unit‘𝑅))
3332sseld 3982 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Unit‘𝑅)))
3433imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Unit‘𝑅))
35 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3635adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑦 ∈ ℕ)
378, 26, 34, 36ressmulgnnd 19096 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(.g𝐺)𝑧) = (𝑦(.g‘(mulGrp‘𝑅))𝑧))
3837eqeq1d 2739 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑦(.g𝐺)𝑧) = (0g𝐺) ↔ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)))
3938rabbidva 3443 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} = {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
4039fveq2d 6910 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) = (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
41 fvex 6919 . . . . . . . . . . . . . . . 16 (Base‘𝐺) ∈ V
4241rabex 5339 . . . . . . . . . . . . . . 15 {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V
4342a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V)
44 hashxrcl 14396 . . . . . . . . . . . . . 14 ({𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4543, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4640, 45eqeltrrd 2842 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
47 fvex 6919 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
4847rabex 5339 . . . . . . . . . . . . . 14 {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V
4948a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V)
50 hashxrcl 14396 . . . . . . . . . . . . 13 ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
5149, 50syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
52 nnre 12273 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
5352adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
5453rexrd 11311 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ*)
55 simprl 771 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝐺))
5620ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (Base‘𝐺) ⊆ (Base‘𝑅))
5756sseld 3982 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Base‘𝑅)))
5855, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝑅))
5958rabss3d 4081 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
6049, 59jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
61 hashss 14448 . . . . . . . . . . . . 13 (({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
6260, 61syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
635adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑅 ∈ IDomn)
64 eqid 2737 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
657, 8, 64unitgrpid 20385 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (1r𝑅) = (0g𝐺))
666, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝑅) = (0g𝐺))
6766eqcomd 2743 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐺) = (1r𝑅))
6816, 64ringidcl 20262 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
696, 68syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7067, 69eqeltrd 2841 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ (Base‘𝑅))
7170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (0g𝐺) ∈ (Base‘𝑅))
72 eqid 2737 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
7316, 72idomrootle 26212 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (0g𝐺) ∈ (Base‘𝑅) ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7463, 71, 35, 73syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7546, 51, 54, 62, 74xrletrd 13204 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7640, 75eqbrtrd 5165 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
7776ralrimiva 3146 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ℕ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
78 unitscyglem5.5 . . . . . . . . 9 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
793, 4, 10, 21, 77, 1, 78unitscyglem4 42199 . . . . . . . 8 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) = (ϕ‘𝐷))
8079eleq1d 2826 . . . . . . 7 (𝜑 → ((♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ ↔ (ϕ‘𝐷) ∈ ℕ))
812, 80mpbird 257 . . . . . 6 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ)
8281nngt0d 12315 . . . . 5 (𝜑 → 0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}))
8341rabex 5339 . . . . . . 7 {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V
8483a1i 11 . . . . . 6 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V)
85 hashneq0 14403 . . . . . 6 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8684, 85syl 17 . . . . 5 (𝜑 → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8782, 86mpbid 232 . . . 4 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅)
88 n0 4353 . . . 4 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅ ↔ ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
8987, 88sylib 218 . . 3 (𝜑 → ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
90 nfv 1914 . . . 4 𝑚𝜑
91 fveqeq2 6915 . . . . . . . . 9 (𝑤 = 𝑚 → (((od‘𝐺)‘𝑤) = 𝐷 ↔ ((od‘𝐺)‘𝑚) = 𝐷))
9291elrab 3692 . . . . . . . 8 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ↔ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9392biimpi 216 . . . . . . 7 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9493adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
95 simpll 767 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝜑)
96 simprl 771 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ (Base‘𝐺))
97 simprr 773 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((od‘𝐺)‘𝑚) = 𝐷)
9895, 96, 97jca31 514 . . . . . . 7 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
995idomcringd 20727 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
10015crngmgp 20238 . . . . . . . . . 10 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
10199, 100syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
102101ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ CMnd)
1031ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℕ)
10414sselda 3983 . . . . . . . . 9 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
105104adantr 480 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
1066ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ Ring)
1077, 15unitsubm 20386 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
108106, 107syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
109105, 22eleqtrdi 2851 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘𝑅))
110102cmnmndd 19822 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ Mnd)
1111nnzd 12640 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ ℤ)
112 1zzd 12648 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℤ)
113111, 112zsubcld 12727 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷 − 1) ∈ ℤ)
114 1cnd 11256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ∈ ℂ)
115114addridd 11461 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 + 0) = 1)
1161nnge1d 12314 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐷)
117115, 116eqbrtrd 5165 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 0) ≤ 𝐷)
118 1red 11262 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
119 0red 11264 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℝ)
1201nnred 12281 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℝ)
121118, 119, 120leaddsub2d 11865 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1 + 0) ≤ 𝐷 ↔ 0 ≤ (𝐷 − 1)))
122117, 121mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (𝐷 − 1))
123113, 122jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
124 elnn0z 12626 . . . . . . . . . . . . . . . . . 18 ((𝐷 − 1) ∈ ℕ0 ↔ ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
125123, 124sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 − 1) ∈ ℕ0)
126125adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (Base‘𝐺)) → (𝐷 − 1) ∈ ℕ0)
127126adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷 − 1) ∈ ℕ0)
12817, 72, 110, 127, 109mulgnn0cld 19113 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚) ∈ (Base‘𝑅))
129 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚))
130129oveq1d 7446 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → (𝑜(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚))
131130eqeq1d 2739 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → ((𝑜(.r𝑅)𝑚) = (1r𝑅) ↔ (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅)))
132 eqid 2737 . . . . . . . . . . . . . . . . . 18 (.r𝑅) = (.r𝑅)
13315, 132mgpplusg 20141 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (+g‘(mulGrp‘𝑅))
134133a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
135134oveqd 7448 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
136103nncnd 12282 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℂ)
137 1cnd 11256 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 1 ∈ ℂ)
138136, 137npcand 11624 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1) + 1) = 𝐷)
139138eqcomd 2743 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((𝐷 − 1) + 1))
140139oveq1d 7446 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚))
141 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
14212, 72, 141mulgnn0p1 19103 . . . . . . . . . . . . . . . . . . 19 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝐷 − 1) ∈ ℕ0𝑚 ∈ (Base‘(mulGrp‘𝑅))) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
143110, 127, 105, 142syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
144140, 143eqtr2d 2778 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
14515, 64ringidval 20180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1r𝑅) = (0g‘(mulGrp‘𝑅))
146145a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
147146eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
1487, 641unit 20374 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
1496, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
150147, 149eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (Base‘𝐺)) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
152151adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
15323a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
154 eqid 2737 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
1558, 12, 154ress0g 18775 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝑅) ∈ Mnd ∧ (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅) ∧ (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
156110, 152, 153, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
157 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘𝐺)‘𝑚) = 𝐷)
158157eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝑚))
159158oveq1d 7446 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (((od‘𝐺)‘𝑚)(.g𝐺)𝑚))
160 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (od‘𝐺) = (od‘𝐺)
161 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝐺) = (0g𝐺)
1623, 160, 4, 161odid 19556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (Base‘𝐺) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
163162ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
164159, 163eqtrd 2777 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (0g𝐺))
165164eqcomd 2743 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g𝐺) = (𝐷(.g𝐺)𝑚))
166156, 165eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (𝐷(.g𝐺)𝑚))
16731sselda 3983 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Unit‘𝑅))
168167adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
1698, 153, 168, 103ressmulgnnd 19096 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
170166, 169eqtr2d 2778 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
171144, 170eqtrd 2777 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
172145a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
173172eqcomd 2743 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
174171, 173eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (1r𝑅))
175135, 174eqtrd 2777 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅))
176128, 131, 175rspcedvd 3624 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅))
177109, 176jca 511 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
178 eqid 2737 . . . . . . . . . . . . 13 (∥r𝑅) = (∥r𝑅)
17916, 178, 132dvdsr 20362 . . . . . . . . . . . 12 (𝑚(∥r𝑅)(1r𝑅) ↔ (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
180177, 179sylibr 234 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚(∥r𝑅)(1r𝑅))
18199adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑅 ∈ CRing)
182181adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ CRing)
1837, 64, 178crngunit 20378 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
184182, 183syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
185180, 184mpbird 257 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
186 eqid 2737 . . . . . . . . . . 11 (od‘(mulGrp‘𝑅)) = (od‘(mulGrp‘𝑅))
1878, 186, 160submod 19587 . . . . . . . . . 10 (((Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑚 ∈ (Unit‘𝑅)) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
188108, 185, 187syl2anc 584 . . . . . . . . 9 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
189188, 157eqtrd 2777 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = 𝐷)
190102, 103, 105, 189isprimroot2 42095 . . . . . . 7 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19198, 190syl 17 . . . . . 6 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19294, 191mpdan 687 . . . . 5 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
193192ex 412 . . . 4 (𝜑 → (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19490, 193eximd 2216 . . 3 (𝜑 → (∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19589, 194mpd 15 . 2 (𝜑 → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
196 n0 4353 . 2 (((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
197195, 196sylibr 234 1 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  cin 3950  wss 3951  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  chash 14369  cdvds 16290  ϕcphi 16801  Basecbs 17247  s cress 17274  +gcplusg 17297  .rcmulr 17298  0gc0g 17484  Mndcmnd 18747  SubMndcsubmnd 18795  Grpcgrp 18951  .gcmg 19085  odcod 19542  CMndccmn 19798  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  rcdsr 20354  Unitcui 20355  IDomncidom 20693   PrimRoots cprimroots 42092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-phi 16803  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-od 19546  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-lmod 20860  df-lss 20930  df-lsp 20970  df-cnfld 21365  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-mon1 26170  df-uc1p 26171  df-q1p 26172  df-r1p 26173  df-primroots 42093
This theorem is referenced by:  aks5lem7  42201
  Copyright terms: Public domain W3C validator