Step | Hyp | Ref
| Expression |
1 | | unitscyglem5.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℕ) |
2 | 1 | phicld 16819 |
. . . . . . 7
⊢ (𝜑 → (ϕ‘𝐷) ∈
ℕ) |
3 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
4 | | eqid 2740 |
. . . . . . . . 9
⊢
(.g‘𝐺) = (.g‘𝐺) |
5 | | unitscyglem5.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ IDomn) |
6 | 5 | idomringd 20750 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
8 | | unitscyglem5.1 |
. . . . . . . . . . 11
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s
(Unit‘𝑅)) |
9 | 7, 8 | unitgrp 20409 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
10 | 6, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Grp) |
11 | | unitscyglem5.3 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) ∈ Fin) |
12 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
13 | 8, 12 | ressbasss 17297 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺)
⊆ (Base‘(mulGrp‘𝑅)) |
14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐺) ⊆
(Base‘(mulGrp‘𝑅))) |
15 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
16 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | 15, 16 | mgpbas 20167 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(mulGrp‘𝑅))) |
19 | 18 | eqimsscd 4066 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅)) |
20 | 14, 19 | sstrd 4019 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐺) ⊆ (Base‘𝑅)) |
21 | 11, 20 | ssfid 9329 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐺) ∈ Fin) |
22 | 17 | eqcomi 2749 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘𝑅) |
23 | 22, 7 | unitss 20402 |
. . . . . . . . . . . . . . . . . 18
⊢
(Unit‘𝑅)
⊆ (Base‘(mulGrp‘𝑅)) |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Unit‘𝑅) ⊆
(Base‘(mulGrp‘𝑅))) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (Unit‘𝑅) ⊆
(Base‘(mulGrp‘𝑅))) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))) |
27 | 8, 12 | ressbasssg 17295 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘𝐺)
⊆ ((Unit‘𝑅)
∩ (Base‘(mulGrp‘𝑅))) |
28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩
(Base‘(mulGrp‘𝑅)))) |
29 | | inss1 4258 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Unit‘𝑅)
∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅) |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((Unit‘𝑅) ∩
(Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅)) |
31 | 28, 30 | sstrd 4019 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (Base‘𝐺) ⊆ (Unit‘𝑅)) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (Base‘𝐺) ⊆ (Unit‘𝑅)) |
33 | 32 | sseld 4007 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Unit‘𝑅))) |
34 | 33 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Unit‘𝑅)) |
35 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑦 ∈ ℕ) |
37 | 8, 26, 34, 36 | ressmulgnnd 19118 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(.g‘𝐺)𝑧) = (𝑦(.g‘(mulGrp‘𝑅))𝑧)) |
38 | 37 | eqeq1d 2742 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑦(.g‘𝐺)𝑧) = (0g‘𝐺) ↔ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺))) |
39 | 38 | rabbidva 3450 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)} = {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) |
40 | 39 | fveq2d 6924 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)}) = (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)})) |
41 | | fvex 6933 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐺)
∈ V |
42 | 41 | rabex 5357 |
. . . . . . . . . . . . . . 15
⊢ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)} ∈ V |
43 | 42 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)} ∈ V) |
44 | | hashxrcl 14406 |
. . . . . . . . . . . . . 14
⊢ ({𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)}) ∈
ℝ*) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)}) ∈
ℝ*) |
46 | 40, 45 | eqeltrrd 2845 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ∈
ℝ*) |
47 | | fvex 6933 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅)
∈ V |
48 | 47 | rabex 5357 |
. . . . . . . . . . . . . 14
⊢ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ∈ V |
49 | 48 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ∈ V) |
50 | | hashxrcl 14406 |
. . . . . . . . . . . . 13
⊢ ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ∈
ℝ*) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ∈
ℝ*) |
52 | | nnre 12300 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
53 | 52 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ) |
54 | 53 | rexrd 11340 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ*) |
55 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺))) → 𝑧 ∈ (Base‘𝐺)) |
56 | 20 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺))) → (Base‘𝐺) ⊆ (Base‘𝑅)) |
57 | 56 | sseld 4007 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺))) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Base‘𝑅))) |
58 | 55, 57 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺))) → 𝑧 ∈ (Base‘𝑅)) |
59 | 58 | rabss3d 4104 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) |
60 | 49, 59 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)})) |
61 | | hashss 14458 |
. . . . . . . . . . . . 13
⊢ (({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)})) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)})) |
63 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ IDomn) |
64 | | eqid 2740 |
. . . . . . . . . . . . . . . . . 18
⊢
(1r‘𝑅) = (1r‘𝑅) |
65 | 7, 8, 64 | unitgrpid 20411 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Ring →
(1r‘𝑅) =
(0g‘𝐺)) |
66 | 6, 65 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1r‘𝑅) = (0g‘𝐺)) |
67 | 66 | eqcomd 2746 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0g‘𝐺) = (1r‘𝑅)) |
68 | 16, 64 | ringidcl 20289 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
69 | 6, 68 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
70 | 67, 69 | eqeltrd 2844 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝐺) ∈ (Base‘𝑅)) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) →
(0g‘𝐺)
∈ (Base‘𝑅)) |
72 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(.g‘(mulGrp‘𝑅)) =
(.g‘(mulGrp‘𝑅)) |
73 | 16, 72 | idomrootle 26232 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ IDomn ∧
(0g‘𝐺)
∈ (Base‘𝑅) ∧
𝑦 ∈ ℕ) →
(♯‘{𝑧 ∈
(Base‘𝑅) ∣
(𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ≤ 𝑦) |
74 | 63, 71, 35, 73 | syl3anc 1371 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ≤ 𝑦) |
75 | 46, 51, 54, 62, 74 | xrletrd 13224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g‘𝐺)}) ≤ 𝑦) |
76 | 40, 75 | eqbrtrd 5188 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)}) ≤ 𝑦) |
77 | 76 | ralrimiva 3152 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ ℕ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘𝐺)𝑧) = (0g‘𝐺)}) ≤ 𝑦) |
78 | | unitscyglem5.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∥ (♯‘(Base‘𝐺))) |
79 | 3, 4, 10, 21, 77, 1, 78 | unitscyglem4 42155 |
. . . . . . . 8
⊢ (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) = (ϕ‘𝐷)) |
80 | 79 | eleq1d 2829 |
. . . . . . 7
⊢ (𝜑 → ((♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ ↔ (ϕ‘𝐷) ∈
ℕ)) |
81 | 2, 80 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ) |
82 | 81 | nngt0d 12342 |
. . . . 5
⊢ (𝜑 → 0 <
(♯‘{𝑤 ∈
(Base‘𝐺) ∣
((od‘𝐺)‘𝑤) = 𝐷})) |
83 | 41 | rabex 5357 |
. . . . . . 7
⊢ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V |
84 | 83 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V) |
85 | | hashneq0 14413 |
. . . . . 6
⊢ ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V → (0 <
(♯‘{𝑤 ∈
(Base‘𝐺) ∣
((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅)) |
86 | 84, 85 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 <
(♯‘{𝑤 ∈
(Base‘𝐺) ∣
((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅)) |
87 | 82, 86 | mpbid 232 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅) |
88 | | n0 4376 |
. . . 4
⊢ ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅ ↔ ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) |
89 | 87, 88 | sylib 218 |
. . 3
⊢ (𝜑 → ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) |
90 | | nfv 1913 |
. . . 4
⊢
Ⅎ𝑚𝜑 |
91 | | fveqeq2 6929 |
. . . . . . . . 9
⊢ (𝑤 = 𝑚 → (((od‘𝐺)‘𝑤) = 𝐷 ↔ ((od‘𝐺)‘𝑚) = 𝐷)) |
92 | 91 | elrab 3708 |
. . . . . . . 8
⊢ (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ↔ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) |
93 | 92 | biimpi 216 |
. . . . . . 7
⊢ (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) |
94 | 93 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) |
95 | | simpll 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝜑) |
96 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ (Base‘𝐺)) |
97 | | simprr 772 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((od‘𝐺)‘𝑚) = 𝐷) |
98 | 95, 96, 97 | jca31 514 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) |
99 | 5 | idomcringd 20749 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
100 | 15 | crngmgp 20268 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
101 | 99, 100 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
102 | 101 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ CMnd) |
103 | 1 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℕ) |
104 | 14 | sselda 4008 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Base‘(mulGrp‘𝑅))) |
105 | 104 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘(mulGrp‘𝑅))) |
106 | 6 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ Ring) |
107 | 7, 15 | unitsubm 20412 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ∈
(SubMnd‘(mulGrp‘𝑅))) |
108 | 106, 107 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅))) |
109 | 105, 22 | eleqtrdi 2854 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘𝑅)) |
110 | 102 | cmnmndd 19846 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ Mnd) |
111 | 1 | nnzd 12666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷 ∈ ℤ) |
112 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 1 ∈
ℤ) |
113 | 111, 112 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐷 − 1) ∈ ℤ) |
114 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 1 ∈
ℂ) |
115 | 114 | addridd 11490 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (1 + 0) =
1) |
116 | 1 | nnge1d 12341 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ≤ 𝐷) |
117 | 115, 116 | eqbrtrd 5188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1 + 0) ≤ 𝐷) |
118 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ∈
ℝ) |
119 | | 0red 11293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ∈
ℝ) |
120 | 1 | nnred 12308 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐷 ∈ ℝ) |
121 | 118, 119,
120 | leaddsub2d 11892 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((1 + 0) ≤ 𝐷 ↔ 0 ≤ (𝐷 − 1))) |
122 | 117, 121 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ≤ (𝐷 − 1)) |
123 | 113, 122 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐷 − 1) ∈ ℤ ∧ 0 ≤
(𝐷 −
1))) |
124 | | elnn0z 12652 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 − 1) ∈
ℕ0 ↔ ((𝐷 − 1) ∈ ℤ ∧ 0 ≤
(𝐷 −
1))) |
125 | 123, 124 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷 − 1) ∈
ℕ0) |
126 | 125 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) → (𝐷 − 1) ∈
ℕ0) |
127 | 126 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷 − 1) ∈
ℕ0) |
128 | 17, 72, 110, 127, 109 | mulgnn0cld 19135 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚) ∈ (Base‘𝑅)) |
129 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)) → 𝑜 = ((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)) |
130 | 129 | oveq1d 7463 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)) → (𝑜(.r‘𝑅)𝑚) = (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(.r‘𝑅)𝑚)) |
131 | 130 | eqeq1d 2742 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)) → ((𝑜(.r‘𝑅)𝑚) = (1r‘𝑅) ↔ (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(.r‘𝑅)𝑚) = (1r‘𝑅))) |
132 | | eqid 2740 |
. . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝑅) = (.r‘𝑅) |
133 | 15, 132 | mgpplusg 20165 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
134 | 133 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
135 | 134 | oveqd 7465 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(.r‘𝑅)𝑚) = (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚)) |
136 | 103 | nncnd 12309 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℂ) |
137 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 1 ∈ ℂ) |
138 | 136, 137 | npcand 11651 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1) + 1) = 𝐷) |
139 | 138 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((𝐷 − 1) + 1)) |
140 | 139 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1) +
1)(.g‘(mulGrp‘𝑅))𝑚)) |
141 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
142 | 12, 72, 141 | mulgnn0p1 19125 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ (𝐷 −
1) ∈ ℕ0 ∧ 𝑚 ∈ (Base‘(mulGrp‘𝑅))) → (((𝐷 − 1) +
1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚)) |
143 | 110, 127,
105, 142 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1) +
1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚)) |
144 | 140, 143 | eqtr2d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚)) |
145 | 15, 64 | ringidval 20210 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
146 | 145 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1r‘𝑅) =
(0g‘(mulGrp‘𝑅))) |
147 | 146 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 →
(0g‘(mulGrp‘𝑅)) = (1r‘𝑅)) |
148 | 7, 64 | 1unit 20400 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
149 | 6, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1r‘𝑅) ∈ (Unit‘𝑅)) |
150 | 147, 149 | eqeltrd 2844 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 →
(0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅)) |
151 | 150 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) →
(0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅)) |
152 | 151 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) →
(0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅)) |
153 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))) |
154 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(0g‘(mulGrp‘𝑅)) =
(0g‘(mulGrp‘𝑅)) |
155 | 8, 12, 154 | ress0g 18800 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅) ∧ (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))) →
(0g‘(mulGrp‘𝑅)) = (0g‘𝐺)) |
156 | 110, 152,
153, 155 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) →
(0g‘(mulGrp‘𝑅)) = (0g‘𝐺)) |
157 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘𝐺)‘𝑚) = 𝐷) |
158 | 157 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝑚)) |
159 | 158 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘𝐺)𝑚) = (((od‘𝐺)‘𝑚)(.g‘𝐺)𝑚)) |
160 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(od‘𝐺) =
(od‘𝐺) |
161 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0g‘𝐺) = (0g‘𝐺) |
162 | 3, 160, 4, 161 | odid 19580 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ (Base‘𝐺) → (((od‘𝐺)‘𝑚)(.g‘𝐺)𝑚) = (0g‘𝐺)) |
163 | 162 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((od‘𝐺)‘𝑚)(.g‘𝐺)𝑚) = (0g‘𝐺)) |
164 | 159, 163 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘𝐺)𝑚) = (0g‘𝐺)) |
165 | 164 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘𝐺) = (𝐷(.g‘𝐺)𝑚)) |
166 | 156, 165 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) →
(0g‘(mulGrp‘𝑅)) = (𝐷(.g‘𝐺)𝑚)) |
167 | 31 | sselda 4008 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Unit‘𝑅)) |
168 | 167 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅)) |
169 | 8, 153, 168, 103 | ressmulgnnd 19118 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘𝐺)𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚)) |
170 | 166, 169 | eqtr2d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅))) |
171 | 144, 170 | eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅))) |
172 | 145 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (1r‘𝑅) =
(0g‘(mulGrp‘𝑅))) |
173 | 172 | eqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) →
(0g‘(mulGrp‘𝑅)) = (1r‘𝑅)) |
174 | 171, 173 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (1r‘𝑅)) |
175 | 135, 174 | eqtrd 2780 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 −
1)(.g‘(mulGrp‘𝑅))𝑚)(.r‘𝑅)𝑚) = (1r‘𝑅)) |
176 | 128, 131,
175 | rspcedvd 3637 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r‘𝑅)𝑚) = (1r‘𝑅)) |
177 | 109, 176 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r‘𝑅)𝑚) = (1r‘𝑅))) |
178 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
179 | 16, 178, 132 | dvdsr 20388 |
. . . . . . . . . . . 12
⊢ (𝑚(∥r‘𝑅)(1r‘𝑅) ↔ (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r‘𝑅)𝑚) = (1r‘𝑅))) |
180 | 177, 179 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚(∥r‘𝑅)(1r‘𝑅)) |
181 | 99 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) → 𝑅 ∈ CRing) |
182 | 181 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ CRing) |
183 | 7, 64, 178 | crngunit 20404 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r‘𝑅)(1r‘𝑅))) |
184 | 182, 183 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r‘𝑅)(1r‘𝑅))) |
185 | 180, 184 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅)) |
186 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(od‘(mulGrp‘𝑅)) = (od‘(mulGrp‘𝑅)) |
187 | 8, 186, 160 | submod 19611 |
. . . . . . . . . 10
⊢
(((Unit‘𝑅)
∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑚 ∈ (Unit‘𝑅)) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚)) |
188 | 108, 185,
187 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚)) |
189 | 188, 157 | eqtrd 2780 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = 𝐷) |
190 | 102, 103,
105, 189 | isprimroot2 42051 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)) |
191 | 98, 190 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)) |
192 | 94, 191 | mpdan 686 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)) |
193 | 192 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))) |
194 | 90, 193 | eximd 2217 |
. . 3
⊢ (𝜑 → (∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))) |
195 | 89, 194 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)) |
196 | | n0 4376 |
. 2
⊢
(((mulGrp‘𝑅)
PrimRoots 𝐷) ≠ ∅
↔ ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)) |
197 | 195, 196 | sylibr 234 |
1
⊢ (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅) |