Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem5 Structured version   Visualization version   GIF version

Theorem unitscyglem5 42194
Description: Lemma for unitscyg (Contributed by metakunt, 9-Aug-2025.)
Hypotheses
Ref Expression
unitscyglem5.1 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
unitscyglem5.2 (𝜑𝑅 ∈ IDomn)
unitscyglem5.3 (𝜑 → (Base‘𝑅) ∈ Fin)
unitscyglem5.4 (𝜑𝐷 ∈ ℕ)
unitscyglem5.5 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
Assertion
Ref Expression
unitscyglem5 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)

Proof of Theorem unitscyglem5
Dummy variables 𝑚 𝑜 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitscyglem5.4 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
21phicld 16749 . . . . . . 7 (𝜑 → (ϕ‘𝐷) ∈ ℕ)
3 eqid 2730 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2730 . . . . . . . . 9 (.g𝐺) = (.g𝐺)
5 unitscyglem5.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
65idomringd 20644 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
7 eqid 2730 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
8 unitscyglem5.1 . . . . . . . . . . 11 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
97, 8unitgrp 20299 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
106, 9syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
11 unitscyglem5.3 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) ∈ Fin)
12 eqid 2730 . . . . . . . . . . . . 13 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
138, 12ressbasss 17216 . . . . . . . . . . . 12 (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅))
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅)))
15 eqid 2730 . . . . . . . . . . . . . 14 (mulGrp‘𝑅) = (mulGrp‘𝑅)
16 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
1715, 16mgpbas 20061 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
1918eqimsscd 4007 . . . . . . . . . . 11 (𝜑 → (Base‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅))
2014, 19sstrd 3960 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ⊆ (Base‘𝑅))
2111, 20ssfid 9219 . . . . . . . . 9 (𝜑 → (Base‘𝐺) ∈ Fin)
2217eqcomi 2739 . . . . . . . . . . . . . . . . . . 19 (Base‘(mulGrp‘𝑅)) = (Base‘𝑅)
2322, 7unitss 20292 . . . . . . . . . . . . . . . . . 18 (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
278, 12ressbasssg 17214 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅)))
2827a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))))
29 inss1 4203 . . . . . . . . . . . . . . . . . . . 20 ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅)
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅))
3128, 30sstrd 3960 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐺) ⊆ (Unit‘𝑅))
3231adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ) → (Base‘𝐺) ⊆ (Unit‘𝑅))
3332sseld 3948 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Unit‘𝑅)))
3433imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Unit‘𝑅))
35 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3635adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑦 ∈ ℕ)
378, 26, 34, 36ressmulgnnd 19017 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(.g𝐺)𝑧) = (𝑦(.g‘(mulGrp‘𝑅))𝑧))
3837eqeq1d 2732 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑦(.g𝐺)𝑧) = (0g𝐺) ↔ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)))
3938rabbidva 3415 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} = {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
4039fveq2d 6865 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) = (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
41 fvex 6874 . . . . . . . . . . . . . . . 16 (Base‘𝐺) ∈ V
4241rabex 5297 . . . . . . . . . . . . . . 15 {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V
4342a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V)
44 hashxrcl 14329 . . . . . . . . . . . . . 14 ({𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4543, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4640, 45eqeltrrd 2830 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
47 fvex 6874 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
4847rabex 5297 . . . . . . . . . . . . . 14 {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V
4948a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V)
50 hashxrcl 14329 . . . . . . . . . . . . 13 ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
5149, 50syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
52 nnre 12200 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
5352adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
5453rexrd 11231 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ*)
55 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝐺))
5620ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (Base‘𝐺) ⊆ (Base‘𝑅))
5756sseld 3948 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Base‘𝑅)))
5855, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝑅))
5958rabss3d 4047 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
6049, 59jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
61 hashss 14381 . . . . . . . . . . . . 13 (({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
6260, 61syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
635adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑅 ∈ IDomn)
64 eqid 2730 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
657, 8, 64unitgrpid 20301 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (1r𝑅) = (0g𝐺))
666, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝑅) = (0g𝐺))
6766eqcomd 2736 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐺) = (1r𝑅))
6816, 64ringidcl 20181 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
696, 68syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7067, 69eqeltrd 2829 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ (Base‘𝑅))
7170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (0g𝐺) ∈ (Base‘𝑅))
72 eqid 2730 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
7316, 72idomrootle 26085 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (0g𝐺) ∈ (Base‘𝑅) ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7463, 71, 35, 73syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7546, 51, 54, 62, 74xrletrd 13129 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7640, 75eqbrtrd 5132 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
7776ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ℕ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
78 unitscyglem5.5 . . . . . . . . 9 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
793, 4, 10, 21, 77, 1, 78unitscyglem4 42193 . . . . . . . 8 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) = (ϕ‘𝐷))
8079eleq1d 2814 . . . . . . 7 (𝜑 → ((♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ ↔ (ϕ‘𝐷) ∈ ℕ))
812, 80mpbird 257 . . . . . 6 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ)
8281nngt0d 12242 . . . . 5 (𝜑 → 0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}))
8341rabex 5297 . . . . . . 7 {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V
8483a1i 11 . . . . . 6 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V)
85 hashneq0 14336 . . . . . 6 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8684, 85syl 17 . . . . 5 (𝜑 → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8782, 86mpbid 232 . . . 4 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅)
88 n0 4319 . . . 4 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅ ↔ ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
8987, 88sylib 218 . . 3 (𝜑 → ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
90 nfv 1914 . . . 4 𝑚𝜑
91 fveqeq2 6870 . . . . . . . . 9 (𝑤 = 𝑚 → (((od‘𝐺)‘𝑤) = 𝐷 ↔ ((od‘𝐺)‘𝑚) = 𝐷))
9291elrab 3662 . . . . . . . 8 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ↔ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9392biimpi 216 . . . . . . 7 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9493adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
95 simpll 766 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝜑)
96 simprl 770 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ (Base‘𝐺))
97 simprr 772 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((od‘𝐺)‘𝑚) = 𝐷)
9895, 96, 97jca31 514 . . . . . . 7 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
995idomcringd 20643 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
10015crngmgp 20157 . . . . . . . . . 10 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
10199, 100syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
102101ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ CMnd)
1031ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℕ)
10414sselda 3949 . . . . . . . . 9 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
105104adantr 480 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
1066ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ Ring)
1077, 15unitsubm 20302 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
108106, 107syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
109105, 22eleqtrdi 2839 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘𝑅))
110102cmnmndd 19741 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ Mnd)
1111nnzd 12563 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ ℤ)
112 1zzd 12571 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℤ)
113111, 112zsubcld 12650 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷 − 1) ∈ ℤ)
114 1cnd 11176 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ∈ ℂ)
115114addridd 11381 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 + 0) = 1)
1161nnge1d 12241 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐷)
117115, 116eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 0) ≤ 𝐷)
118 1red 11182 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
119 0red 11184 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℝ)
1201nnred 12208 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℝ)
121118, 119, 120leaddsub2d 11787 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1 + 0) ≤ 𝐷 ↔ 0 ≤ (𝐷 − 1)))
122117, 121mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (𝐷 − 1))
123113, 122jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
124 elnn0z 12549 . . . . . . . . . . . . . . . . . 18 ((𝐷 − 1) ∈ ℕ0 ↔ ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
125123, 124sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 − 1) ∈ ℕ0)
126125adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (Base‘𝐺)) → (𝐷 − 1) ∈ ℕ0)
127126adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷 − 1) ∈ ℕ0)
12817, 72, 110, 127, 109mulgnn0cld 19034 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚) ∈ (Base‘𝑅))
129 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚))
130129oveq1d 7405 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → (𝑜(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚))
131130eqeq1d 2732 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → ((𝑜(.r𝑅)𝑚) = (1r𝑅) ↔ (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅)))
132 eqid 2730 . . . . . . . . . . . . . . . . . 18 (.r𝑅) = (.r𝑅)
13315, 132mgpplusg 20060 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (+g‘(mulGrp‘𝑅))
134133a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
135134oveqd 7407 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
136103nncnd 12209 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℂ)
137 1cnd 11176 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 1 ∈ ℂ)
138136, 137npcand 11544 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1) + 1) = 𝐷)
139138eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((𝐷 − 1) + 1))
140139oveq1d 7405 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚))
141 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
14212, 72, 141mulgnn0p1 19024 . . . . . . . . . . . . . . . . . . 19 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝐷 − 1) ∈ ℕ0𝑚 ∈ (Base‘(mulGrp‘𝑅))) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
143110, 127, 105, 142syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
144140, 143eqtr2d 2766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
14515, 64ringidval 20099 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1r𝑅) = (0g‘(mulGrp‘𝑅))
146145a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
147146eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
1487, 641unit 20290 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
1496, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
150147, 149eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (Base‘𝐺)) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
152151adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
15323a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
154 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
1558, 12, 154ress0g 18696 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝑅) ∈ Mnd ∧ (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅) ∧ (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
156110, 152, 153, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
157 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘𝐺)‘𝑚) = 𝐷)
158157eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝑚))
159158oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (((od‘𝐺)‘𝑚)(.g𝐺)𝑚))
160 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (od‘𝐺) = (od‘𝐺)
161 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝐺) = (0g𝐺)
1623, 160, 4, 161odid 19475 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (Base‘𝐺) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
163162ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
164159, 163eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (0g𝐺))
165164eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g𝐺) = (𝐷(.g𝐺)𝑚))
166156, 165eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (𝐷(.g𝐺)𝑚))
16731sselda 3949 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Unit‘𝑅))
168167adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
1698, 153, 168, 103ressmulgnnd 19017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
170166, 169eqtr2d 2766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
171144, 170eqtrd 2765 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
172145a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
173172eqcomd 2736 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
174171, 173eqtrd 2765 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (1r𝑅))
175135, 174eqtrd 2765 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅))
176128, 131, 175rspcedvd 3593 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅))
177109, 176jca 511 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
178 eqid 2730 . . . . . . . . . . . . 13 (∥r𝑅) = (∥r𝑅)
17916, 178, 132dvdsr 20278 . . . . . . . . . . . 12 (𝑚(∥r𝑅)(1r𝑅) ↔ (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
180177, 179sylibr 234 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚(∥r𝑅)(1r𝑅))
18199adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑅 ∈ CRing)
182181adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ CRing)
1837, 64, 178crngunit 20294 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
184182, 183syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
185180, 184mpbird 257 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
186 eqid 2730 . . . . . . . . . . 11 (od‘(mulGrp‘𝑅)) = (od‘(mulGrp‘𝑅))
1878, 186, 160submod 19506 . . . . . . . . . 10 (((Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑚 ∈ (Unit‘𝑅)) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
188108, 185, 187syl2anc 584 . . . . . . . . 9 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
189188, 157eqtrd 2765 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = 𝐷)
190102, 103, 105, 189isprimroot2 42089 . . . . . . 7 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19198, 190syl 17 . . . . . 6 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19294, 191mpdan 687 . . . . 5 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
193192ex 412 . . . 4 (𝜑 → (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19490, 193eximd 2217 . . 3 (𝜑 → (∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19589, 194mpd 15 . 2 (𝜑 → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
196 n0 4319 . 2 (((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
197195, 196sylibr 234 1 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  cz 12536  chash 14302  cdvds 16229  ϕcphi 16741  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Mndcmnd 18668  SubMndcsubmnd 18716  Grpcgrp 18872  .gcmg 19006  odcod 19461  CMndccmn 19717  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  rcdsr 20270  Unitcui 20271  IDomncidom 20609   PrimRoots cprimroots 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-primroots 42087
This theorem is referenced by:  aks5lem7  42195
  Copyright terms: Public domain W3C validator