Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem5 Structured version   Visualization version   GIF version

Theorem unitscyglem5 42156
Description: Lemma for unitscyg (Contributed by metakunt, 9-Aug-2025.)
Hypotheses
Ref Expression
unitscyglem5.1 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
unitscyglem5.2 (𝜑𝑅 ∈ IDomn)
unitscyglem5.3 (𝜑 → (Base‘𝑅) ∈ Fin)
unitscyglem5.4 (𝜑𝐷 ∈ ℕ)
unitscyglem5.5 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
Assertion
Ref Expression
unitscyglem5 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)

Proof of Theorem unitscyglem5
Dummy variables 𝑚 𝑜 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitscyglem5.4 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
21phicld 16819 . . . . . . 7 (𝜑 → (ϕ‘𝐷) ∈ ℕ)
3 eqid 2740 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2740 . . . . . . . . 9 (.g𝐺) = (.g𝐺)
5 unitscyglem5.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
65idomringd 20750 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
7 eqid 2740 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
8 unitscyglem5.1 . . . . . . . . . . 11 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
97, 8unitgrp 20409 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
106, 9syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
11 unitscyglem5.3 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) ∈ Fin)
12 eqid 2740 . . . . . . . . . . . . 13 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
138, 12ressbasss 17297 . . . . . . . . . . . 12 (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅))
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅)))
15 eqid 2740 . . . . . . . . . . . . . 14 (mulGrp‘𝑅) = (mulGrp‘𝑅)
16 eqid 2740 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
1715, 16mgpbas 20167 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
1918eqimsscd 4066 . . . . . . . . . . 11 (𝜑 → (Base‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅))
2014, 19sstrd 4019 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ⊆ (Base‘𝑅))
2111, 20ssfid 9329 . . . . . . . . 9 (𝜑 → (Base‘𝐺) ∈ Fin)
2217eqcomi 2749 . . . . . . . . . . . . . . . . . . 19 (Base‘(mulGrp‘𝑅)) = (Base‘𝑅)
2322, 7unitss 20402 . . . . . . . . . . . . . . . . . 18 (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
278, 12ressbasssg 17295 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅)))
2827a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))))
29 inss1 4258 . . . . . . . . . . . . . . . . . . . 20 ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅)
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅))
3128, 30sstrd 4019 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐺) ⊆ (Unit‘𝑅))
3231adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ) → (Base‘𝐺) ⊆ (Unit‘𝑅))
3332sseld 4007 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Unit‘𝑅)))
3433imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Unit‘𝑅))
35 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3635adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑦 ∈ ℕ)
378, 26, 34, 36ressmulgnnd 19118 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(.g𝐺)𝑧) = (𝑦(.g‘(mulGrp‘𝑅))𝑧))
3837eqeq1d 2742 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑦(.g𝐺)𝑧) = (0g𝐺) ↔ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)))
3938rabbidva 3450 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} = {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
4039fveq2d 6924 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) = (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
41 fvex 6933 . . . . . . . . . . . . . . . 16 (Base‘𝐺) ∈ V
4241rabex 5357 . . . . . . . . . . . . . . 15 {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V
4342a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V)
44 hashxrcl 14406 . . . . . . . . . . . . . 14 ({𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4543, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4640, 45eqeltrrd 2845 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
47 fvex 6933 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
4847rabex 5357 . . . . . . . . . . . . . 14 {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V
4948a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V)
50 hashxrcl 14406 . . . . . . . . . . . . 13 ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
5149, 50syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
52 nnre 12300 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
5352adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
5453rexrd 11340 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ*)
55 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝐺))
5620ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (Base‘𝐺) ⊆ (Base‘𝑅))
5756sseld 4007 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Base‘𝑅)))
5855, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝑅))
5958rabss3d 4104 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
6049, 59jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
61 hashss 14458 . . . . . . . . . . . . 13 (({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
6260, 61syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
635adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑅 ∈ IDomn)
64 eqid 2740 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
657, 8, 64unitgrpid 20411 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (1r𝑅) = (0g𝐺))
666, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝑅) = (0g𝐺))
6766eqcomd 2746 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐺) = (1r𝑅))
6816, 64ringidcl 20289 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
696, 68syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7067, 69eqeltrd 2844 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ (Base‘𝑅))
7170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (0g𝐺) ∈ (Base‘𝑅))
72 eqid 2740 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
7316, 72idomrootle 26232 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (0g𝐺) ∈ (Base‘𝑅) ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7463, 71, 35, 73syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7546, 51, 54, 62, 74xrletrd 13224 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7640, 75eqbrtrd 5188 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
7776ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ℕ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
78 unitscyglem5.5 . . . . . . . . 9 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
793, 4, 10, 21, 77, 1, 78unitscyglem4 42155 . . . . . . . 8 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) = (ϕ‘𝐷))
8079eleq1d 2829 . . . . . . 7 (𝜑 → ((♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ ↔ (ϕ‘𝐷) ∈ ℕ))
812, 80mpbird 257 . . . . . 6 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ)
8281nngt0d 12342 . . . . 5 (𝜑 → 0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}))
8341rabex 5357 . . . . . . 7 {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V
8483a1i 11 . . . . . 6 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V)
85 hashneq0 14413 . . . . . 6 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8684, 85syl 17 . . . . 5 (𝜑 → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8782, 86mpbid 232 . . . 4 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅)
88 n0 4376 . . . 4 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅ ↔ ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
8987, 88sylib 218 . . 3 (𝜑 → ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
90 nfv 1913 . . . 4 𝑚𝜑
91 fveqeq2 6929 . . . . . . . . 9 (𝑤 = 𝑚 → (((od‘𝐺)‘𝑤) = 𝐷 ↔ ((od‘𝐺)‘𝑚) = 𝐷))
9291elrab 3708 . . . . . . . 8 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ↔ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9392biimpi 216 . . . . . . 7 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9493adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
95 simpll 766 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝜑)
96 simprl 770 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ (Base‘𝐺))
97 simprr 772 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((od‘𝐺)‘𝑚) = 𝐷)
9895, 96, 97jca31 514 . . . . . . 7 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
995idomcringd 20749 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
10015crngmgp 20268 . . . . . . . . . 10 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
10199, 100syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
102101ad2antrr 725 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ CMnd)
1031ad2antrr 725 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℕ)
10414sselda 4008 . . . . . . . . 9 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
105104adantr 480 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
1066ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ Ring)
1077, 15unitsubm 20412 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
108106, 107syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
109105, 22eleqtrdi 2854 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘𝑅))
110102cmnmndd 19846 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ Mnd)
1111nnzd 12666 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ ℤ)
112 1zzd 12674 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℤ)
113111, 112zsubcld 12752 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷 − 1) ∈ ℤ)
114 1cnd 11285 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ∈ ℂ)
115114addridd 11490 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 + 0) = 1)
1161nnge1d 12341 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐷)
117115, 116eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 0) ≤ 𝐷)
118 1red 11291 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
119 0red 11293 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℝ)
1201nnred 12308 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℝ)
121118, 119, 120leaddsub2d 11892 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1 + 0) ≤ 𝐷 ↔ 0 ≤ (𝐷 − 1)))
122117, 121mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (𝐷 − 1))
123113, 122jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
124 elnn0z 12652 . . . . . . . . . . . . . . . . . 18 ((𝐷 − 1) ∈ ℕ0 ↔ ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
125123, 124sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 − 1) ∈ ℕ0)
126125adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (Base‘𝐺)) → (𝐷 − 1) ∈ ℕ0)
127126adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷 − 1) ∈ ℕ0)
12817, 72, 110, 127, 109mulgnn0cld 19135 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚) ∈ (Base‘𝑅))
129 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚))
130129oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → (𝑜(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚))
131130eqeq1d 2742 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → ((𝑜(.r𝑅)𝑚) = (1r𝑅) ↔ (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅)))
132 eqid 2740 . . . . . . . . . . . . . . . . . 18 (.r𝑅) = (.r𝑅)
13315, 132mgpplusg 20165 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (+g‘(mulGrp‘𝑅))
134133a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
135134oveqd 7465 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
136103nncnd 12309 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℂ)
137 1cnd 11285 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 1 ∈ ℂ)
138136, 137npcand 11651 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1) + 1) = 𝐷)
139138eqcomd 2746 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((𝐷 − 1) + 1))
140139oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚))
141 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
14212, 72, 141mulgnn0p1 19125 . . . . . . . . . . . . . . . . . . 19 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝐷 − 1) ∈ ℕ0𝑚 ∈ (Base‘(mulGrp‘𝑅))) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
143110, 127, 105, 142syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
144140, 143eqtr2d 2781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
14515, 64ringidval 20210 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1r𝑅) = (0g‘(mulGrp‘𝑅))
146145a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
147146eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
1487, 641unit 20400 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
1496, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
150147, 149eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (Base‘𝐺)) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
152151adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
15323a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
154 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
1558, 12, 154ress0g 18800 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝑅) ∈ Mnd ∧ (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅) ∧ (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
156110, 152, 153, 155syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
157 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘𝐺)‘𝑚) = 𝐷)
158157eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝑚))
159158oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (((od‘𝐺)‘𝑚)(.g𝐺)𝑚))
160 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (od‘𝐺) = (od‘𝐺)
161 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝐺) = (0g𝐺)
1623, 160, 4, 161odid 19580 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (Base‘𝐺) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
163162ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
164159, 163eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (0g𝐺))
165164eqcomd 2746 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g𝐺) = (𝐷(.g𝐺)𝑚))
166156, 165eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (𝐷(.g𝐺)𝑚))
16731sselda 4008 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Unit‘𝑅))
168167adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
1698, 153, 168, 103ressmulgnnd 19118 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
170166, 169eqtr2d 2781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
171144, 170eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
172145a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
173172eqcomd 2746 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
174171, 173eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (1r𝑅))
175135, 174eqtrd 2780 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅))
176128, 131, 175rspcedvd 3637 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅))
177109, 176jca 511 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
178 eqid 2740 . . . . . . . . . . . . 13 (∥r𝑅) = (∥r𝑅)
17916, 178, 132dvdsr 20388 . . . . . . . . . . . 12 (𝑚(∥r𝑅)(1r𝑅) ↔ (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
180177, 179sylibr 234 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚(∥r𝑅)(1r𝑅))
18199adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑅 ∈ CRing)
182181adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ CRing)
1837, 64, 178crngunit 20404 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
184182, 183syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
185180, 184mpbird 257 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
186 eqid 2740 . . . . . . . . . . 11 (od‘(mulGrp‘𝑅)) = (od‘(mulGrp‘𝑅))
1878, 186, 160submod 19611 . . . . . . . . . 10 (((Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑚 ∈ (Unit‘𝑅)) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
188108, 185, 187syl2anc 583 . . . . . . . . 9 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
189188, 157eqtrd 2780 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = 𝐷)
190102, 103, 105, 189isprimroot2 42051 . . . . . . 7 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19198, 190syl 17 . . . . . 6 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19294, 191mpdan 686 . . . . 5 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
193192ex 412 . . . 4 (𝜑 → (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19490, 193eximd 2217 . . 3 (𝜑 → (∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19589, 194mpd 15 . 2 (𝜑 → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
196 n0 4376 . 2 (((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
197195, 196sylibr 234 1 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  chash 14379  cdvds 16302  ϕcphi 16811  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Mndcmnd 18772  SubMndcsubmnd 18817  Grpcgrp 18973  .gcmg 19107  odcod 19566  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261  rcdsr 20380  Unitcui 20381  IDomncidom 20715   PrimRoots cprimroots 42048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541  df-phi 16813  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-lmod 20882  df-lss 20953  df-lsp 20993  df-cnfld 21388  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193  df-primroots 42049
This theorem is referenced by:  aks5lem7  42157
  Copyright terms: Public domain W3C validator