Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem5 Structured version   Visualization version   GIF version

Theorem unitscyglem5 42212
Description: Lemma for unitscyg (Contributed by metakunt, 9-Aug-2025.)
Hypotheses
Ref Expression
unitscyglem5.1 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
unitscyglem5.2 (𝜑𝑅 ∈ IDomn)
unitscyglem5.3 (𝜑 → (Base‘𝑅) ∈ Fin)
unitscyglem5.4 (𝜑𝐷 ∈ ℕ)
unitscyglem5.5 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
Assertion
Ref Expression
unitscyglem5 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)

Proof of Theorem unitscyglem5
Dummy variables 𝑚 𝑜 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unitscyglem5.4 . . . . . . . 8 (𝜑𝐷 ∈ ℕ)
21phicld 16791 . . . . . . 7 (𝜑 → (ϕ‘𝐷) ∈ ℕ)
3 eqid 2735 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2735 . . . . . . . . 9 (.g𝐺) = (.g𝐺)
5 unitscyglem5.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
65idomringd 20688 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
7 eqid 2735 . . . . . . . . . . 11 (Unit‘𝑅) = (Unit‘𝑅)
8 unitscyglem5.1 . . . . . . . . . . 11 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
97, 8unitgrp 20343 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
106, 9syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
11 unitscyglem5.3 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) ∈ Fin)
12 eqid 2735 . . . . . . . . . . . . 13 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
138, 12ressbasss 17260 . . . . . . . . . . . 12 (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅))
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (Base‘𝐺) ⊆ (Base‘(mulGrp‘𝑅)))
15 eqid 2735 . . . . . . . . . . . . . 14 (mulGrp‘𝑅) = (mulGrp‘𝑅)
16 eqid 2735 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
1715, 16mgpbas 20105 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
1918eqimsscd 4016 . . . . . . . . . . 11 (𝜑 → (Base‘(mulGrp‘𝑅)) ⊆ (Base‘𝑅))
2014, 19sstrd 3969 . . . . . . . . . 10 (𝜑 → (Base‘𝐺) ⊆ (Base‘𝑅))
2111, 20ssfid 9273 . . . . . . . . 9 (𝜑 → (Base‘𝐺) ∈ Fin)
2217eqcomi 2744 . . . . . . . . . . . . . . . . . . 19 (Base‘(mulGrp‘𝑅)) = (Base‘𝑅)
2322, 7unitss 20336 . . . . . . . . . . . . . . . . . 18 (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))
2423a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
278, 12ressbasssg 17258 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅)))
2827a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐺) ⊆ ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))))
29 inss1 4212 . . . . . . . . . . . . . . . . . . . 20 ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅)
3029a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((Unit‘𝑅) ∩ (Base‘(mulGrp‘𝑅))) ⊆ (Unit‘𝑅))
3128, 30sstrd 3969 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐺) ⊆ (Unit‘𝑅))
3231adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ) → (Base‘𝐺) ⊆ (Unit‘𝑅))
3332sseld 3957 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Unit‘𝑅)))
3433imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑧 ∈ (Unit‘𝑅))
35 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
3635adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → 𝑦 ∈ ℕ)
378, 26, 34, 36ressmulgnnd 19061 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(.g𝐺)𝑧) = (𝑦(.g‘(mulGrp‘𝑅))𝑧))
3837eqeq1d 2737 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑦(.g𝐺)𝑧) = (0g𝐺) ↔ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)))
3938rabbidva 3422 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} = {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
4039fveq2d 6880 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) = (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
41 fvex 6889 . . . . . . . . . . . . . . . 16 (Base‘𝐺) ∈ V
4241rabex 5309 . . . . . . . . . . . . . . 15 {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V
4342a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V)
44 hashxrcl 14375 . . . . . . . . . . . . . 14 ({𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4543, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ∈ ℝ*)
4640, 45eqeltrrd 2835 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
47 fvex 6889 . . . . . . . . . . . . . . 15 (Base‘𝑅) ∈ V
4847rabex 5309 . . . . . . . . . . . . . 14 {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V
4948a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V)
50 hashxrcl 14375 . . . . . . . . . . . . 13 ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
5149, 50syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ∈ ℝ*)
52 nnre 12247 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
5352adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
5453rexrd 11285 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → 𝑦 ∈ ℝ*)
55 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝐺))
5620ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (Base‘𝐺) ⊆ (Base‘𝑅))
5756sseld 3957 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → (𝑧 ∈ (Base‘𝐺) → 𝑧 ∈ (Base‘𝑅)))
5855, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑧 ∈ (Base‘𝐺) ∧ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺))) → 𝑧 ∈ (Base‘𝑅))
5958rabss3d 4056 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ) → {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)})
6049, 59jca 511 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → ({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
61 hashss 14427 . . . . . . . . . . . . 13 (({𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ∈ V ∧ {𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)} ⊆ {𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
6260, 61syl 17 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}))
635adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → 𝑅 ∈ IDomn)
64 eqid 2735 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
657, 8, 64unitgrpid 20345 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (1r𝑅) = (0g𝐺))
666, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1r𝑅) = (0g𝐺))
6766eqcomd 2741 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐺) = (1r𝑅))
6816, 64ringidcl 20225 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
696, 68syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
7067, 69eqeltrd 2834 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ (Base‘𝑅))
7170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ) → (0g𝐺) ∈ (Base‘𝑅))
72 eqid 2735 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
7316, 72idomrootle 26130 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (0g𝐺) ∈ (Base‘𝑅) ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7463, 71, 35, 73syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝑅) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7546, 51, 54, 62, 74xrletrd 13178 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g‘(mulGrp‘𝑅))𝑧) = (0g𝐺)}) ≤ 𝑦)
7640, 75eqbrtrd 5141 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
7776ralrimiva 3132 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ ℕ (♯‘{𝑧 ∈ (Base‘𝐺) ∣ (𝑦(.g𝐺)𝑧) = (0g𝐺)}) ≤ 𝑦)
78 unitscyglem5.5 . . . . . . . . 9 (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))
793, 4, 10, 21, 77, 1, 78unitscyglem4 42211 . . . . . . . 8 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) = (ϕ‘𝐷))
8079eleq1d 2819 . . . . . . 7 (𝜑 → ((♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ ↔ (ϕ‘𝐷) ∈ ℕ))
812, 80mpbird 257 . . . . . 6 (𝜑 → (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∈ ℕ)
8281nngt0d 12289 . . . . 5 (𝜑 → 0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}))
8341rabex 5309 . . . . . . 7 {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V
8483a1i 11 . . . . . 6 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V)
85 hashneq0 14382 . . . . . 6 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ∈ V → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8684, 85syl 17 . . . . 5 (𝜑 → (0 < (♯‘{𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ↔ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅))
8782, 86mpbid 232 . . . 4 (𝜑 → {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅)
88 n0 4328 . . . 4 ({𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ≠ ∅ ↔ ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
8987, 88sylib 218 . . 3 (𝜑 → ∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷})
90 nfv 1914 . . . 4 𝑚𝜑
91 fveqeq2 6885 . . . . . . . . 9 (𝑤 = 𝑚 → (((od‘𝐺)‘𝑤) = 𝐷 ↔ ((od‘𝐺)‘𝑚) = 𝐷))
9291elrab 3671 . . . . . . . 8 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} ↔ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9392biimpi 216 . . . . . . 7 (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
9493adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
95 simpll 766 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝜑)
96 simprl 770 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ (Base‘𝐺))
97 simprr 772 . . . . . . . 8 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((od‘𝐺)‘𝑚) = 𝐷)
9895, 96, 97jca31 514 . . . . . . 7 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → ((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷))
995idomcringd 20687 . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
10015crngmgp 20201 . . . . . . . . . 10 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
10199, 100syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
102101ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ CMnd)
1031ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℕ)
10414sselda 3958 . . . . . . . . 9 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
105104adantr 480 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘(mulGrp‘𝑅)))
1066ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ Ring)
1077, 15unitsubm 20346 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
108106, 107syl 17 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
109105, 22eleqtrdi 2844 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Base‘𝑅))
110102cmnmndd 19785 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (mulGrp‘𝑅) ∈ Mnd)
1111nnzd 12615 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ ℤ)
112 1zzd 12623 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℤ)
113111, 112zsubcld 12702 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷 − 1) ∈ ℤ)
114 1cnd 11230 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ∈ ℂ)
115114addridd 11435 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 + 0) = 1)
1161nnge1d 12288 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐷)
117115, 116eqbrtrd 5141 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 0) ≤ 𝐷)
118 1red 11236 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℝ)
119 0red 11238 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℝ)
1201nnred 12255 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℝ)
121118, 119, 120leaddsub2d 11839 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1 + 0) ≤ 𝐷 ↔ 0 ≤ (𝐷 − 1)))
122117, 121mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (𝐷 − 1))
123113, 122jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
124 elnn0z 12601 . . . . . . . . . . . . . . . . . 18 ((𝐷 − 1) ∈ ℕ0 ↔ ((𝐷 − 1) ∈ ℤ ∧ 0 ≤ (𝐷 − 1)))
125123, 124sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 − 1) ∈ ℕ0)
126125adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (Base‘𝐺)) → (𝐷 − 1) ∈ ℕ0)
127126adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷 − 1) ∈ ℕ0)
12817, 72, 110, 127, 109mulgnn0cld 19078 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚) ∈ (Base‘𝑅))
129 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚))
130129oveq1d 7420 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → (𝑜(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚))
131130eqeq1d 2737 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) ∧ 𝑜 = ((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)) → ((𝑜(.r𝑅)𝑚) = (1r𝑅) ↔ (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅)))
132 eqid 2735 . . . . . . . . . . . . . . . . . 18 (.r𝑅) = (.r𝑅)
13315, 132mgpplusg 20104 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (+g‘(mulGrp‘𝑅))
134133a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
135134oveqd 7422 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
136103nncnd 12256 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 ∈ ℂ)
137 1cnd 11230 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 1 ∈ ℂ)
138136, 137npcand 11598 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((𝐷 − 1) + 1) = 𝐷)
139138eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((𝐷 − 1) + 1))
140139oveq1d 7420 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚))
141 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
14212, 72, 141mulgnn0p1 19068 . . . . . . . . . . . . . . . . . . 19 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝐷 − 1) ∈ ℕ0𝑚 ∈ (Base‘(mulGrp‘𝑅))) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
143110, 127, 105, 142syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1) + 1)(.g‘(mulGrp‘𝑅))𝑚) = (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚))
144140, 143eqtr2d 2771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
14515, 64ringidval 20143 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1r𝑅) = (0g‘(mulGrp‘𝑅))
146145a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
147146eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
1487, 641unit 20334 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
1496, 148syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1r𝑅) ∈ (Unit‘𝑅))
150147, 149eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (Base‘𝐺)) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
152151adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅))
15323a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅)))
154 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
1558, 12, 154ress0g 18740 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝑅) ∈ Mnd ∧ (0g‘(mulGrp‘𝑅)) ∈ (Unit‘𝑅) ∧ (Unit‘𝑅) ⊆ (Base‘(mulGrp‘𝑅))) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
156110, 152, 153, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (0g𝐺))
157 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘𝐺)‘𝑚) = 𝐷)
158157eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝐷 = ((od‘𝐺)‘𝑚))
159158oveq1d 7420 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (((od‘𝐺)‘𝑚)(.g𝐺)𝑚))
160 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (od‘𝐺) = (od‘𝐺)
161 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝐺) = (0g𝐺)
1623, 160, 4, 161odid 19519 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (Base‘𝐺) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
163162ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((od‘𝐺)‘𝑚)(.g𝐺)𝑚) = (0g𝐺))
164159, 163eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (0g𝐺))
165164eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g𝐺) = (𝐷(.g𝐺)𝑚))
166156, 165eqtrd 2770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (𝐷(.g𝐺)𝑚))
16731sselda 3958 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑚 ∈ (Unit‘𝑅))
168167adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
1698, 153, 168, 103ressmulgnnd 19061 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g𝐺)𝑚) = (𝐷(.g‘(mulGrp‘𝑅))𝑚))
170166, 169eqtr2d 2771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝐷(.g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
171144, 170eqtrd 2770 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (0g‘(mulGrp‘𝑅)))
172145a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
173172eqcomd 2741 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (0g‘(mulGrp‘𝑅)) = (1r𝑅))
174171, 173eqtrd 2770 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(+g‘(mulGrp‘𝑅))𝑚) = (1r𝑅))
175135, 174eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (((𝐷 − 1)(.g‘(mulGrp‘𝑅))𝑚)(.r𝑅)𝑚) = (1r𝑅))
176128, 131, 175rspcedvd 3603 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅))
177109, 176jca 511 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
178 eqid 2735 . . . . . . . . . . . . 13 (∥r𝑅) = (∥r𝑅)
17916, 178, 132dvdsr 20322 . . . . . . . . . . . 12 (𝑚(∥r𝑅)(1r𝑅) ↔ (𝑚 ∈ (Base‘𝑅) ∧ ∃𝑜 ∈ (Base‘𝑅)(𝑜(.r𝑅)𝑚) = (1r𝑅)))
180177, 179sylibr 234 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚(∥r𝑅)(1r𝑅))
18199adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (Base‘𝐺)) → 𝑅 ∈ CRing)
182181adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑅 ∈ CRing)
1837, 64, 178crngunit 20338 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
184182, 183syl 17 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → (𝑚 ∈ (Unit‘𝑅) ↔ 𝑚(∥r𝑅)(1r𝑅)))
185180, 184mpbird 257 . . . . . . . . . 10 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ (Unit‘𝑅))
186 eqid 2735 . . . . . . . . . . 11 (od‘(mulGrp‘𝑅)) = (od‘(mulGrp‘𝑅))
1878, 186, 160submod 19550 . . . . . . . . . 10 (((Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑚 ∈ (Unit‘𝑅)) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
188108, 185, 187syl2anc 584 . . . . . . . . 9 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = ((od‘𝐺)‘𝑚))
189188, 157eqtrd 2770 . . . . . . . 8 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → ((od‘(mulGrp‘𝑅))‘𝑚) = 𝐷)
190102, 103, 105, 189isprimroot2 42107 . . . . . . 7 (((𝜑𝑚 ∈ (Base‘𝐺)) ∧ ((od‘𝐺)‘𝑚) = 𝐷) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19198, 190syl 17 . . . . . 6 (((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) ∧ (𝑚 ∈ (Base‘𝐺) ∧ ((od‘𝐺)‘𝑚) = 𝐷)) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
19294, 191mpdan 687 . . . . 5 ((𝜑𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷}) → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
193192ex 412 . . . 4 (𝜑 → (𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19490, 193eximd 2216 . . 3 (𝜑 → (∃𝑚 𝑚 ∈ {𝑤 ∈ (Base‘𝐺) ∣ ((od‘𝐺)‘𝑤) = 𝐷} → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷)))
19589, 194mpd 15 . 2 (𝜑 → ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
196 n0 4328 . 2 (((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅ ↔ ∃𝑚 𝑚 ∈ ((mulGrp‘𝑅) PrimRoots 𝐷))
197195, 196sylibr 234 1 (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405  Fincfn 8959  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cle 11270  cmin 11466  cn 12240  0cn0 12501  cz 12588  chash 14348  cdvds 16272  ϕcphi 16783  Basecbs 17228  s cress 17251  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  Mndcmnd 18712  SubMndcsubmnd 18760  Grpcgrp 18916  .gcmg 19050  odcod 19505  CMndccmn 19761  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194  rcdsr 20314  Unitcui 20315  IDomncidom 20653   PrimRoots cprimroots 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-dvds 16273  df-gcd 16514  df-phi 16785  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-od 19509  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-lmod 20819  df-lss 20889  df-lsp 20929  df-cnfld 21316  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-q1p 26090  df-r1p 26091  df-primroots 42105
This theorem is referenced by:  aks5lem7  42213
  Copyright terms: Public domain W3C validator