Proof of Theorem dvdsruasso2
Step | Hyp | Ref
| Expression |
1 | | dvdsrspss.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
2 | | dvdsrspss.k |
. . 3
⊢ 𝐾 = (RSpan‘𝑅) |
3 | | dvdsrspss.d |
. . 3
⊢ ∥ =
(∥r‘𝑅) |
4 | | dvdsrspss.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
5 | | dvdsrspss.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
6 | | dvdsruassoi.1 |
. . 3
⊢ 𝑈 = (Unit‘𝑅) |
7 | | dvdsruassoi.2 |
. . 3
⊢ · =
(.r‘𝑅) |
8 | | dvdsruasso.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ IDomn) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dvdsruasso 33197 |
. 2
⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ∃𝑢 ∈ 𝑈 (𝑢 · 𝑋) = 𝑌)) |
10 | | oveq1 7426 |
. . . . . . 7
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → (𝑣 · 𝑌) = (((invr‘𝑅)‘𝑢) · 𝑌)) |
11 | 10 | eqeq1d 2727 |
. . . . . 6
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → ((𝑣 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋)) |
12 | | oveq2 7427 |
. . . . . . 7
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → (𝑢 · 𝑣) = (𝑢 ·
((invr‘𝑅)‘𝑢))) |
13 | 12 | eqeq1d 2727 |
. . . . . 6
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → ((𝑢 · 𝑣) = 1 ↔ (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 )) |
14 | 11, 13 | 3anbi23d 1435 |
. . . . 5
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → (((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ) ↔ ((𝑢 · 𝑋) = 𝑌 ∧ (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋 ∧ (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 ))) |
15 | 8 | idomringd 21274 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
16 | 15 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ Ring) |
17 | | simplr 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢 ∈ 𝑈) |
18 | | eqid 2725 |
. . . . . . 7
⊢
(invr‘𝑅) = (invr‘𝑅) |
19 | 6, 18 | unitinvcl 20341 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝑈) → ((invr‘𝑅)‘𝑢) ∈ 𝑈) |
20 | 16, 17, 19 | syl2anc 582 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((invr‘𝑅)‘𝑢) ∈ 𝑈) |
21 | | simpr 483 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · 𝑋) = 𝑌) |
22 | 21 | oveq2d 7435 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · (𝑢 · 𝑋)) = (((invr‘𝑅)‘𝑢) · 𝑌)) |
23 | 8 | idomcringd 21273 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ CRing) |
24 | 23 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ CRing) |
25 | 1, 6 | unitcl 20326 |
. . . . . . . . . . . 12
⊢
(((invr‘𝑅)‘𝑢) ∈ 𝑈 → ((invr‘𝑅)‘𝑢) ∈ 𝐵) |
26 | 20, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((invr‘𝑅)‘𝑢) ∈ 𝐵) |
27 | 1, 6 | unitcl 20326 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑈 → 𝑢 ∈ 𝐵) |
28 | 17, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢 ∈ 𝐵) |
29 | 1, 7, 24, 26, 28 | crngcomd 20207 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · 𝑢) = (𝑢 ·
((invr‘𝑅)‘𝑢))) |
30 | | dvdsruasso2.1 |
. . . . . . . . . . . 12
⊢ 1 =
(1r‘𝑅) |
31 | 6, 18, 7, 30 | unitrinv 20345 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝑈) → (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 ) |
32 | 16, 17, 31 | syl2anc 582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 ) |
33 | 29, 32 | eqtrd 2765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · 𝑢) = 1 ) |
34 | 33 | oveq1d 7434 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((((invr‘𝑅)‘𝑢) · 𝑢) · 𝑋) = ( 1 · 𝑋)) |
35 | 4 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑋 ∈ 𝐵) |
36 | 1, 7, 16, 26, 28, 35 | ringassd 20209 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((((invr‘𝑅)‘𝑢) · 𝑢) · 𝑋) = (((invr‘𝑅)‘𝑢) · (𝑢 · 𝑋))) |
37 | 1, 7, 30, 16, 35 | ringlidmd 20220 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ( 1 · 𝑋) = 𝑋) |
38 | 34, 36, 37 | 3eqtr3d 2773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · (𝑢 · 𝑋)) = 𝑋) |
39 | 22, 38 | eqtr3d 2767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋) |
40 | 21, 39, 32 | 3jca 1125 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((𝑢 · 𝑋) = 𝑌 ∧ (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋 ∧ (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 )) |
41 | 14, 20, 40 | rspcedvdw 3609 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) |
42 | | simpr1 1191 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) → (𝑢 · 𝑋) = 𝑌) |
43 | 42 | r19.29an 3147 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) → (𝑢 · 𝑋) = 𝑌) |
44 | 41, 43 | impbida 799 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((𝑢 · 𝑋) = 𝑌 ↔ ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ))) |
45 | 44 | rexbidva 3166 |
. 2
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 (𝑢 · 𝑋) = 𝑌 ↔ ∃𝑢 ∈ 𝑈 ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ))) |
46 | 9, 45 | bitrd 278 |
1
⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ∃𝑢 ∈ 𝑈 ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ))) |