Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsruasso2 Structured version   Visualization version   GIF version

Theorem dvdsruasso2 33360
Description: A reformulation of dvdsruasso 33359. (Proposed by Gerard Lang, 28-May-2025.) (Contributed by Thiery Arnoux, 29-May-2025.)
Hypotheses
Ref Expression
dvdsrspss.b 𝐵 = (Base‘𝑅)
dvdsrspss.k 𝐾 = (RSpan‘𝑅)
dvdsrspss.d = (∥r𝑅)
dvdsrspss.x (𝜑𝑋𝐵)
dvdsrspss.y (𝜑𝑌𝐵)
dvdsruassoi.1 𝑈 = (Unit‘𝑅)
dvdsruassoi.2 · = (.r𝑅)
dvdsruasso.r (𝜑𝑅 ∈ IDomn)
dvdsruasso2.1 1 = (1r𝑅)
Assertion
Ref Expression
dvdsruasso2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈𝑣𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )))
Distinct variable groups:   𝑢, ·   𝑢,   𝑢,𝐵   𝑢,𝑅   𝑢,𝑈   𝑢,𝑋   𝑢,𝑌   𝜑,𝑢   𝑣, 1   𝑣, · ,𝑢   𝑣,𝑅   𝑣,𝑈   𝑣,𝑋   𝑣,𝑌   𝜑,𝑣
Allowed substitution hints:   𝐵(𝑣)   (𝑣)   1 (𝑢)   𝐾(𝑣,𝑢)

Proof of Theorem dvdsruasso2
StepHypRef Expression
1 dvdsrspss.b . . 3 𝐵 = (Base‘𝑅)
2 dvdsrspss.k . . 3 𝐾 = (RSpan‘𝑅)
3 dvdsrspss.d . . 3 = (∥r𝑅)
4 dvdsrspss.x . . 3 (𝜑𝑋𝐵)
5 dvdsrspss.y . . 3 (𝜑𝑌𝐵)
6 dvdsruassoi.1 . . 3 𝑈 = (Unit‘𝑅)
7 dvdsruassoi.2 . . 3 · = (.r𝑅)
8 dvdsruasso.r . . 3 (𝜑𝑅 ∈ IDomn)
91, 2, 3, 4, 5, 6, 7, 8dvdsruasso 33359 . 2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌))
10 oveq1 7361 . . . . . . 7 (𝑣 = ((invr𝑅)‘𝑢) → (𝑣 · 𝑌) = (((invr𝑅)‘𝑢) · 𝑌))
1110eqeq1d 2735 . . . . . 6 (𝑣 = ((invr𝑅)‘𝑢) → ((𝑣 · 𝑌) = 𝑋 ↔ (((invr𝑅)‘𝑢) · 𝑌) = 𝑋))
12 oveq2 7362 . . . . . . 7 (𝑣 = ((invr𝑅)‘𝑢) → (𝑢 · 𝑣) = (𝑢 · ((invr𝑅)‘𝑢)))
1312eqeq1d 2735 . . . . . 6 (𝑣 = ((invr𝑅)‘𝑢) → ((𝑢 · 𝑣) = 1 ↔ (𝑢 · ((invr𝑅)‘𝑢)) = 1 ))
1411, 133anbi23d 1441 . . . . 5 (𝑣 = ((invr𝑅)‘𝑢) → (((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ) ↔ ((𝑢 · 𝑋) = 𝑌 ∧ (((invr𝑅)‘𝑢) · 𝑌) = 𝑋 ∧ (𝑢 · ((invr𝑅)‘𝑢)) = 1 )))
158idomringd 20647 . . . . . . 7 (𝜑𝑅 ∈ Ring)
1615ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ Ring)
17 simplr 768 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢𝑈)
18 eqid 2733 . . . . . . 7 (invr𝑅) = (invr𝑅)
196, 18unitinvcl 20312 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑢𝑈) → ((invr𝑅)‘𝑢) ∈ 𝑈)
2016, 17, 19syl2anc 584 . . . . 5 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((invr𝑅)‘𝑢) ∈ 𝑈)
21 simpr 484 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · 𝑋) = 𝑌)
2221oveq2d 7370 . . . . . . 7 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr𝑅)‘𝑢) · (𝑢 · 𝑋)) = (((invr𝑅)‘𝑢) · 𝑌))
238idomcringd 20646 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
2423ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ CRing)
251, 6unitcl 20297 . . . . . . . . . . . 12 (((invr𝑅)‘𝑢) ∈ 𝑈 → ((invr𝑅)‘𝑢) ∈ 𝐵)
2620, 25syl 17 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((invr𝑅)‘𝑢) ∈ 𝐵)
271, 6unitcl 20297 . . . . . . . . . . . 12 (𝑢𝑈𝑢𝐵)
2817, 27syl 17 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢𝐵)
291, 7, 24, 26, 28crngcomd 20177 . . . . . . . . . 10 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr𝑅)‘𝑢) · 𝑢) = (𝑢 · ((invr𝑅)‘𝑢)))
30 dvdsruasso2.1 . . . . . . . . . . . 12 1 = (1r𝑅)
316, 18, 7, 30unitrinv 20316 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑢𝑈) → (𝑢 · ((invr𝑅)‘𝑢)) = 1 )
3216, 17, 31syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · ((invr𝑅)‘𝑢)) = 1 )
3329, 32eqtrd 2768 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr𝑅)‘𝑢) · 𝑢) = 1 )
3433oveq1d 7369 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((((invr𝑅)‘𝑢) · 𝑢) · 𝑋) = ( 1 · 𝑋))
354ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑋𝐵)
361, 7, 16, 26, 28, 35ringassd 20179 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((((invr𝑅)‘𝑢) · 𝑢) · 𝑋) = (((invr𝑅)‘𝑢) · (𝑢 · 𝑋)))
371, 7, 30, 16, 35ringlidmd 20194 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ( 1 · 𝑋) = 𝑋)
3834, 36, 373eqtr3d 2776 . . . . . . 7 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr𝑅)‘𝑢) · (𝑢 · 𝑋)) = 𝑋)
3922, 38eqtr3d 2770 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr𝑅)‘𝑢) · 𝑌) = 𝑋)
4021, 39, 323jca 1128 . . . . 5 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((𝑢 · 𝑋) = 𝑌 ∧ (((invr𝑅)‘𝑢) · 𝑌) = 𝑋 ∧ (𝑢 · ((invr𝑅)‘𝑢)) = 1 ))
4114, 20, 40rspcedvdw 3576 . . . 4 (((𝜑𝑢𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ∃𝑣𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ))
42 simpr1 1195 . . . . 5 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) → (𝑢 · 𝑋) = 𝑌)
4342r19.29an 3137 . . . 4 (((𝜑𝑢𝑈) ∧ ∃𝑣𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) → (𝑢 · 𝑋) = 𝑌)
4441, 43impbida 800 . . 3 ((𝜑𝑢𝑈) → ((𝑢 · 𝑋) = 𝑌 ↔ ∃𝑣𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )))
4544rexbidva 3155 . 2 (𝜑 → (∃𝑢𝑈 (𝑢 · 𝑋) = 𝑌 ↔ ∃𝑢𝑈𝑣𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )))
469, 45bitrd 279 1 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ ∃𝑢𝑈𝑣𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5095  cfv 6488  (class class class)co 7354  Basecbs 17124  .rcmulr 17166  1rcur 20103  Ringcrg 20155  CRingccrg 20156  rcdsr 20276  Unitcui 20277  invrcinvr 20309  IDomncidom 20612  RSpancrsp 21148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-sbg 18855  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-nzr 20432  df-domn 20614  df-idom 20615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator