Proof of Theorem dvdsruasso2
| Step | Hyp | Ref
| Expression |
| 1 | | dvdsrspss.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | dvdsrspss.k |
. . 3
⊢ 𝐾 = (RSpan‘𝑅) |
| 3 | | dvdsrspss.d |
. . 3
⊢ ∥ =
(∥r‘𝑅) |
| 4 | | dvdsrspss.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 5 | | dvdsrspss.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 6 | | dvdsruassoi.1 |
. . 3
⊢ 𝑈 = (Unit‘𝑅) |
| 7 | | dvdsruassoi.2 |
. . 3
⊢ · =
(.r‘𝑅) |
| 8 | | dvdsruasso.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dvdsruasso 33413 |
. 2
⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ∃𝑢 ∈ 𝑈 (𝑢 · 𝑋) = 𝑌)) |
| 10 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → (𝑣 · 𝑌) = (((invr‘𝑅)‘𝑢) · 𝑌)) |
| 11 | 10 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → ((𝑣 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋)) |
| 12 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → (𝑢 · 𝑣) = (𝑢 ·
((invr‘𝑅)‘𝑢))) |
| 13 | 12 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → ((𝑢 · 𝑣) = 1 ↔ (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 )) |
| 14 | 11, 13 | 3anbi23d 1441 |
. . . . 5
⊢ (𝑣 = ((invr‘𝑅)‘𝑢) → (((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ) ↔ ((𝑢 · 𝑋) = 𝑌 ∧ (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋 ∧ (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 ))) |
| 15 | 8 | idomringd 20728 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 16 | 15 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ Ring) |
| 17 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢 ∈ 𝑈) |
| 18 | | eqid 2737 |
. . . . . . 7
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 19 | 6, 18 | unitinvcl 20390 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝑈) → ((invr‘𝑅)‘𝑢) ∈ 𝑈) |
| 20 | 16, 17, 19 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((invr‘𝑅)‘𝑢) ∈ 𝑈) |
| 21 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 · 𝑋) = 𝑌) |
| 22 | 21 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · (𝑢 · 𝑋)) = (((invr‘𝑅)‘𝑢) · 𝑌)) |
| 23 | 8 | idomcringd 20727 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 24 | 23 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑅 ∈ CRing) |
| 25 | 1, 6 | unitcl 20375 |
. . . . . . . . . . . 12
⊢
(((invr‘𝑅)‘𝑢) ∈ 𝑈 → ((invr‘𝑅)‘𝑢) ∈ 𝐵) |
| 26 | 20, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((invr‘𝑅)‘𝑢) ∈ 𝐵) |
| 27 | 1, 6 | unitcl 20375 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑈 → 𝑢 ∈ 𝐵) |
| 28 | 17, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑢 ∈ 𝐵) |
| 29 | 1, 7, 24, 26, 28 | crngcomd 20252 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · 𝑢) = (𝑢 ·
((invr‘𝑅)‘𝑢))) |
| 30 | | dvdsruasso2.1 |
. . . . . . . . . . . 12
⊢ 1 =
(1r‘𝑅) |
| 31 | 6, 18, 7, 30 | unitrinv 20394 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝑈) → (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 ) |
| 32 | 16, 17, 31 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 ) |
| 33 | 29, 32 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · 𝑢) = 1 ) |
| 34 | 33 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((((invr‘𝑅)‘𝑢) · 𝑢) · 𝑋) = ( 1 · 𝑋)) |
| 35 | 4 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → 𝑋 ∈ 𝐵) |
| 36 | 1, 7, 16, 26, 28, 35 | ringassd 20254 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((((invr‘𝑅)‘𝑢) · 𝑢) · 𝑋) = (((invr‘𝑅)‘𝑢) · (𝑢 · 𝑋))) |
| 37 | 1, 7, 30, 16, 35 | ringlidmd 20269 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ( 1 · 𝑋) = 𝑋) |
| 38 | 34, 36, 37 | 3eqtr3d 2785 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · (𝑢 · 𝑋)) = 𝑋) |
| 39 | 22, 38 | eqtr3d 2779 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋) |
| 40 | 21, 39, 32 | 3jca 1129 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ((𝑢 · 𝑋) = 𝑌 ∧ (((invr‘𝑅)‘𝑢) · 𝑌) = 𝑋 ∧ (𝑢 ·
((invr‘𝑅)‘𝑢)) = 1 )) |
| 41 | 14, 20, 40 | rspcedvdw 3625 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 · 𝑋) = 𝑌) → ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) |
| 42 | | simpr1 1195 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) → (𝑢 · 𝑋) = 𝑌) |
| 43 | 42 | r19.29an 3158 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 )) → (𝑢 · 𝑋) = 𝑌) |
| 44 | 41, 43 | impbida 801 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((𝑢 · 𝑋) = 𝑌 ↔ ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ))) |
| 45 | 44 | rexbidva 3177 |
. 2
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 (𝑢 · 𝑋) = 𝑌 ↔ ∃𝑢 ∈ 𝑈 ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ))) |
| 46 | 9, 45 | bitrd 279 |
1
⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ ∃𝑢 ∈ 𝑈 ∃𝑣 ∈ 𝑈 ((𝑢 · 𝑋) = 𝑌 ∧ (𝑣 · 𝑌) = 𝑋 ∧ (𝑢 · 𝑣) = 1 ))) |