| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iffalse 4485. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iffalsei.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | iffalse 4485 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 |
| This theorem is referenced by: ssttrcl 9616 ttrclselem2 9627 sum0 15635 prod0 15857 prmo4 17046 prmo6 17048 itg0 25728 vieta1lem2 26266 right1s 27861 vtxval0 29038 iedgval0 29039 ex-prmo 30460 dfrdg2 35909 dfrdg4 36067 fwddifnp1 36281 bj-pr21val 37130 bj-pr22val 37136 imsqrtvalex 43803 clsk1indlem4 44201 clsk1indlem1 44202 refsum2cnlem1 45198 limsup10ex 45933 iblempty 46125 fouriersw 46391 |
| Copyright terms: Public domain | W3C validator |