| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iffalse 4500. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iffalsei.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | iffalse 4500 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: ssttrcl 9675 ttrclselem2 9686 sum0 15694 prod0 15916 prmo4 17105 prmo6 17107 itg0 25688 vieta1lem2 26226 right1s 27814 vtxval0 28973 iedgval0 28974 ex-prmo 30395 dfrdg2 35790 dfrdg4 35946 fwddifnp1 36160 bj-pr21val 37008 bj-pr22val 37014 imsqrtvalex 43642 clsk1indlem4 44040 clsk1indlem1 44041 refsum2cnlem1 45038 limsup10ex 45778 iblempty 45970 fouriersw 46236 |
| Copyright terms: Public domain | W3C validator |