Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version |
Description: Inference associated with iffalse 4473. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
2 | iffalse 4473 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ifcif 4464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-if 4465 |
This theorem is referenced by: ssttrcl 9434 ttrclselem2 9445 sum0 15414 prod0 15634 prmo4 16810 prmo6 16812 itg0 24925 vieta1lem2 25452 vtxval0 27390 iedgval0 27391 ex-prmo 28802 dfrdg2 33750 dfrdg4 34232 fwddifnp1 34446 bj-pr21val 35182 bj-pr22val 35188 imsqrtvalex 41207 clsk1indlem4 41607 clsk1indlem1 41608 refsum2cnlem1 42533 limsup10ex 43268 iblempty 43460 fouriersw 43726 |
Copyright terms: Public domain | W3C validator |