![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version |
Description: Inference associated with iffalse 4540. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
2 | iffalse 4540 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: ssttrcl 9753 ttrclselem2 9764 sum0 15754 prod0 15976 prmo4 17162 prmo6 17164 itg0 25830 vieta1lem2 26368 right1s 27949 vtxval0 29071 iedgval0 29072 ex-prmo 30488 dfrdg2 35777 dfrdg4 35933 fwddifnp1 36147 bj-pr21val 36996 bj-pr22val 37002 imsqrtvalex 43636 clsk1indlem4 44034 clsk1indlem1 44035 refsum2cnlem1 44975 limsup10ex 45729 iblempty 45921 fouriersw 46187 |
Copyright terms: Public domain | W3C validator |