MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iffalsei Structured version   Visualization version   GIF version

Theorem iffalsei 4354
Description: Inference associated with iffalse 4353. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iffalsei.1 ¬ 𝜑
Assertion
Ref Expression
iffalsei if(𝜑, 𝐴, 𝐵) = 𝐵

Proof of Theorem iffalsei
StepHypRef Expression
1 iffalsei.1 . 2 ¬ 𝜑
2 iffalse 4353 . 2 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
31, 2ax-mp 5 1 if(𝜑, 𝐴, 𝐵) = 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1508  ifcif 4344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-ext 2743
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-ex 1744  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-if 4345
This theorem is referenced by:  sum0  14936  prod0  15155  prmo4  16315  prmo6  16317  itg0  24098  vieta1lem2  24618  vtxval0  26542  iedgval0  26543  ex-prmo  28031  dfrdg2  32598  dfrdg4  32970  fwddifnp1  33184  bj-pr21val  33880  bj-pr22val  33886  clsk1indlem4  39795  clsk1indlem1  39796  refsum2cnlem1  40751  limsup10ex  41519  iblempty  41714  fouriersw  41981
  Copyright terms: Public domain W3C validator