| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iffalse 4487. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iffalsei.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | iffalse 4487 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: ssttrcl 9630 ttrclselem2 9641 sum0 15646 prod0 15868 prmo4 17057 prmo6 17059 itg0 25697 vieta1lem2 26235 right1s 27828 vtxval0 29002 iedgval0 29003 ex-prmo 30421 dfrdg2 35771 dfrdg4 35927 fwddifnp1 36141 bj-pr21val 36989 bj-pr22val 36995 imsqrtvalex 43622 clsk1indlem4 44020 clsk1indlem1 44021 refsum2cnlem1 45018 limsup10ex 45758 iblempty 45950 fouriersw 46216 |
| Copyright terms: Public domain | W3C validator |