Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version |
Description: Inference associated with iffalse 4474. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
2 | iffalse 4474 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-if 4466 |
This theorem is referenced by: ssttrcl 9521 ttrclselem2 9532 sum0 15482 prod0 15702 prmo4 16878 prmo6 16880 itg0 24993 vieta1lem2 25520 vtxval0 27458 iedgval0 27459 ex-prmo 28872 dfrdg2 33820 dfrdg4 34302 fwddifnp1 34516 bj-pr21val 35251 bj-pr22val 35257 imsqrtvalex 41467 clsk1indlem4 41867 clsk1indlem1 41868 refsum2cnlem1 42793 limsup10ex 43543 iblempty 43735 fouriersw 44001 |
Copyright terms: Public domain | W3C validator |