| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iffalse 4497. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iffalsei.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | iffalse 4497 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: ssttrcl 9668 ttrclselem2 9679 sum0 15687 prod0 15909 prmo4 17098 prmo6 17100 itg0 25681 vieta1lem2 26219 right1s 27807 vtxval0 28966 iedgval0 28967 ex-prmo 30388 dfrdg2 35783 dfrdg4 35939 fwddifnp1 36153 bj-pr21val 37001 bj-pr22val 37007 imsqrtvalex 43635 clsk1indlem4 44033 clsk1indlem1 44034 refsum2cnlem1 45031 limsup10ex 45771 iblempty 45963 fouriersw 46229 |
| Copyright terms: Public domain | W3C validator |