![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version |
Description: Inference associated with iffalse 4353. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
2 | iffalse 4353 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1508 ifcif 4344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-ex 1744 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-if 4345 |
This theorem is referenced by: sum0 14936 prod0 15155 prmo4 16315 prmo6 16317 itg0 24098 vieta1lem2 24618 vtxval0 26542 iedgval0 26543 ex-prmo 28031 dfrdg2 32598 dfrdg4 32970 fwddifnp1 33184 bj-pr21val 33880 bj-pr22val 33886 clsk1indlem4 39795 clsk1indlem1 39796 refsum2cnlem1 40751 limsup10ex 41519 iblempty 41714 fouriersw 41981 |
Copyright terms: Public domain | W3C validator |