| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iffalse 4479. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iffalsei.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | iffalse 4479 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ifcif 4470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4471 |
| This theorem is referenced by: ssttrcl 9600 ttrclselem2 9611 sum0 15623 prod0 15845 prmo4 17034 prmo6 17036 itg0 25703 vieta1lem2 26241 right1s 27836 vtxval0 29012 iedgval0 29013 ex-prmo 30431 dfrdg2 35829 dfrdg4 35985 fwddifnp1 36199 bj-pr21val 37047 bj-pr22val 37053 imsqrtvalex 43679 clsk1indlem4 44077 clsk1indlem1 44078 refsum2cnlem1 45074 limsup10ex 45811 iblempty 46003 fouriersw 46269 |
| Copyright terms: Public domain | W3C validator |