![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iffalsei | Structured version Visualization version GIF version |
Description: Inference associated with iffalse 4557. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
2 | iffalse 4557 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: ssttrcl 9784 ttrclselem2 9795 sum0 15769 prod0 15991 prmo4 17175 prmo6 17177 itg0 25835 vieta1lem2 26371 right1s 27952 vtxval0 29074 iedgval0 29075 ex-prmo 30491 dfrdg2 35759 dfrdg4 35915 fwddifnp1 36129 bj-pr21val 36979 bj-pr22val 36985 imsqrtvalex 43608 clsk1indlem4 44006 clsk1indlem1 44007 refsum2cnlem1 44937 limsup10ex 45694 iblempty 45886 fouriersw 46152 |
Copyright terms: Public domain | W3C validator |