Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblempty Structured version   Visualization version   GIF version

Theorem iblempty 45980
Description: The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iblempty ∅ ∈ 𝐿1

Proof of Theorem iblempty
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbf0 25669 . 2 ∅ ∈ MblFn
2 fconstmpt 5747 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
32eqcomi 2746 . . . . . 6 (𝑥 ∈ ℝ ↦ 0) = (ℝ × {0})
43fveq2i 6909 . . . . 5 (∫2‘(𝑥 ∈ ℝ ↦ 0)) = (∫2‘(ℝ × {0}))
5 itg20 25772 . . . . 5 (∫2‘(ℝ × {0})) = 0
64, 5eqtri 2765 . . . 4 (∫2‘(𝑥 ∈ ℝ ↦ 0)) = 0
7 0re 11263 . . . 4 0 ∈ ℝ
86, 7eqeltri 2837 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ
98rgenw 3065 . 2 𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ
10 noel 4338 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
1110intnanr 487 . . . . . . . 8 ¬ (𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘))))
1211iffalsei 4535 . . . . . . 7 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0
1312eqcomi 2746 . . . . . 6 0 = if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)
1413a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 = if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))
1514mpteq2dva 5242 . . . 4 (⊤ → (𝑥 ∈ ℝ ↦ 0) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
16 eqidd 2738 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
17 dm0 5931 . . . . 5 dom ∅ = ∅
1817a1i 11 . . . 4 (⊤ → dom ∅ = ∅)
1910intnan 486 . . . . 5 ¬ (⊤ ∧ 𝑥 ∈ ∅)
2019pm2.21i 119 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → (∅‘𝑥) = 0)
2115, 16, 18, 20isibl 25800 . . 3 (⊤ → (∅ ∈ 𝐿1 ↔ (∅ ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ)))
2221mptru 1547 . 2 (∅ ∈ 𝐿1 ↔ (∅ ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ))
231, 9, 22mpbir2an 711 1 ∅ ∈ 𝐿1
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wral 3061  c0 4333  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  ici 11157  cle 11296   / cdiv 11920  3c3 12322  ...cfz 13547  cexp 14102  cre 15136  MblFncmbf 25649  2citg2 25651  𝐿1cibl 25652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-0p 25705
This theorem is referenced by:  itgvol0  45983
  Copyright terms: Public domain W3C validator