MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval0 Structured version   Visualization version   GIF version

Theorem vtxval0 26838
Description: Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
Assertion
Ref Expression
vtxval0 (Vtx‘∅) = ∅

Proof of Theorem vtxval0
StepHypRef Expression
1 0nelxp 5576 . . 3 ¬ ∅ ∈ (V × V)
21iffalsei 4460 . 2 if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) = (Base‘∅)
3 vtxval 26799 . 2 (Vtx‘∅) = if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅))
4 base0 16536 . 2 ∅ = (Base‘∅)
52, 3, 43eqtr4i 2857 1 (Vtx‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  Vcvv 3480  c0 4276  ifcif 4450   × cxp 5540  cfv 6343  1st c1st 7682  Basecbs 16483  Vtxcvtx 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-iota 6302  df-fun 6345  df-fv 6351  df-slot 16487  df-base 16489  df-vtx 26797
This theorem is referenced by:  uhgr0  26872  usgr0  27039  0grsubgr  27074  cplgr0  27221  vtxdg0v  27269  0grrusgr  27375  0wlk0  27448  0conngr  27983  frgr0  28056
  Copyright terms: Public domain W3C validator