| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxval0 | Structured version Visualization version GIF version | ||
| Description: Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| Ref | Expression |
|---|---|
| vtxval0 | ⊢ (Vtx‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5650 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | 1 | iffalsei 4485 | . 2 ⊢ if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) = (Base‘∅) |
| 3 | vtxval 28976 | . 2 ⊢ (Vtx‘∅) = if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) | |
| 4 | base0 17122 | . 2 ⊢ ∅ = (Base‘∅) | |
| 5 | 2, 3, 4 | 3eqtr4i 2764 | 1 ⊢ (Vtx‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ifcif 4475 × cxp 5614 ‘cfv 6481 1st c1st 7919 Basecbs 17117 Vtxcvtx 28972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 df-vtx 28974 |
| This theorem is referenced by: uhgr0 29049 usgr0 29219 0grsubgr 29254 cplgr0 29401 vtxdg0v 29450 0grrusgr 29556 0wlk0 29628 0conngr 30167 frgr0 30240 |
| Copyright terms: Public domain | W3C validator |