MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval0 Structured version   Visualization version   GIF version

Theorem vtxval0 29015
Description: Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.)
Assertion
Ref Expression
vtxval0 (Vtx‘∅) = ∅

Proof of Theorem vtxval0
StepHypRef Expression
1 0nelxp 5650 . . 3 ¬ ∅ ∈ (V × V)
21iffalsei 4485 . 2 if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) = (Base‘∅)
3 vtxval 28976 . 2 (Vtx‘∅) = if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅))
4 base0 17122 . 2 ∅ = (Base‘∅)
52, 3, 43eqtr4i 2764 1 (Vtx‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  ifcif 4475   × cxp 5614  cfv 6481  1st c1st 7919  Basecbs 17117  Vtxcvtx 28972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12123  df-slot 17090  df-ndx 17102  df-base 17118  df-vtx 28974
This theorem is referenced by:  uhgr0  29049  usgr0  29219  0grsubgr  29254  cplgr0  29401  vtxdg0v  29450  0grrusgr  29556  0wlk0  29628  0conngr  30167  frgr0  30240
  Copyright terms: Public domain W3C validator