| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxval0 | Structured version Visualization version GIF version | ||
| Description: Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| Ref | Expression |
|---|---|
| vtxval0 | ⊢ (Vtx‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5672 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | 1 | iffalsei 4498 | . 2 ⊢ if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) = (Base‘∅) |
| 3 | vtxval 28927 | . 2 ⊢ (Vtx‘∅) = if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) | |
| 4 | base0 17184 | . 2 ⊢ ∅ = (Base‘∅) | |
| 5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ (Vtx‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ifcif 4488 × cxp 5636 ‘cfv 6511 1st c1st 7966 Basecbs 17179 Vtxcvtx 28923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-vtx 28925 |
| This theorem is referenced by: uhgr0 29000 usgr0 29170 0grsubgr 29205 cplgr0 29352 vtxdg0v 29401 0grrusgr 29507 0wlk0 29581 0conngr 30121 frgr0 30194 |
| Copyright terms: Public domain | W3C validator |