MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmo4 Structured version   Visualization version   GIF version

Theorem prmo4 16295
Description: The primorial of 4. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmo4 (#p‘4) = 6

Proof of Theorem prmo4
StepHypRef Expression
1 4nn 11573 . . . 4 4 ∈ ℕ
2 prmonn2 16209 . . . 4 (4 ∈ ℕ → (#p‘4) = if(4 ∈ ℙ, ((#p‘(4 − 1)) · 4), (#p‘(4 − 1))))
31, 2ax-mp 5 . . 3 (#p‘4) = if(4 ∈ ℙ, ((#p‘(4 − 1)) · 4), (#p‘(4 − 1)))
4 4nprm 15873 . . . 4 ¬ 4 ∈ ℙ
54iffalsei 4395 . . 3 if(4 ∈ ℙ, ((#p‘(4 − 1)) · 4), (#p‘(4 − 1))) = (#p‘(4 − 1))
63, 5eqtri 2819 . 2 (#p‘4) = (#p‘(4 − 1))
7 4m1e3 11619 . . . 4 (4 − 1) = 3
87fveq2i 6546 . . 3 (#p‘(4 − 1)) = (#p‘3)
9 prmo3 16211 . . 3 (#p‘3) = 6
108, 9eqtri 2819 . 2 (#p‘(4 − 1)) = 6
116, 10eqtri 2819 1 (#p‘4) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wcel 2081  ifcif 4385  cfv 6230  (class class class)co 7021  1c1 10389   · cmul 10393  cmin 10722  cn 11491  3c3 11546  4c4 11547  6c6 11549  cprime 15849  #pcprmo 16201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-sup 8757  df-oi 8825  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-n0 11751  df-z 11835  df-uz 12099  df-rp 12245  df-fz 12748  df-fzo 12889  df-seq 13225  df-exp 13285  df-hash 13546  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-clim 14684  df-prod 15098  df-dvds 15446  df-prm 15850  df-prmo 16202
This theorem is referenced by:  prmo5  16296
  Copyright terms: Public domain W3C validator