MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmo4 Structured version   Visualization version   GIF version

Theorem prmo4 17177
Description: The primorial of 4. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmo4 (#p‘4) = 6

Proof of Theorem prmo4
StepHypRef Expression
1 4nn 12378 . . . 4 4 ∈ ℕ
2 prmonn2 17088 . . . 4 (4 ∈ ℕ → (#p‘4) = if(4 ∈ ℙ, ((#p‘(4 − 1)) · 4), (#p‘(4 − 1))))
31, 2ax-mp 5 . . 3 (#p‘4) = if(4 ∈ ℙ, ((#p‘(4 − 1)) · 4), (#p‘(4 − 1)))
4 4nprm 16744 . . . 4 ¬ 4 ∈ ℙ
54iffalsei 4558 . . 3 if(4 ∈ ℙ, ((#p‘(4 − 1)) · 4), (#p‘(4 − 1))) = (#p‘(4 − 1))
63, 5eqtri 2768 . 2 (#p‘4) = (#p‘(4 − 1))
7 4m1e3 12424 . . . 4 (4 − 1) = 3
87fveq2i 6925 . . 3 (#p‘(4 − 1)) = (#p‘3)
9 prmo3 17090 . . 3 (#p‘3) = 6
108, 9eqtri 2768 . 2 (#p‘(4 − 1)) = 6
116, 10eqtri 2768 1 (#p‘4) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  ifcif 4548  cfv 6575  (class class class)co 7450  1c1 11187   · cmul 11191  cmin 11522  cn 12295  3c3 12351  4c4 12352  6c6 12354  cprime 16720  #pcprmo 17080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-sup 9513  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-n0 12556  df-z 12642  df-uz 12906  df-rp 13060  df-fz 13570  df-fzo 13714  df-seq 14055  df-exp 14115  df-hash 14382  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-clim 15536  df-prod 15954  df-dvds 16305  df-prm 16721  df-prmo 17081
This theorem is referenced by:  prmo5  17178
  Copyright terms: Public domain W3C validator