Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prod0 | Structured version Visualization version GIF version |
Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
prod0 | ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12396 | . 2 ⊢ 1 ∈ ℤ | |
2 | nnuz 12667 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
3 | id 22 | . . 3 ⊢ (1 ∈ ℤ → 1 ∈ ℤ) | |
4 | ax-1ne0 10986 | . . . 4 ⊢ 1 ≠ 0 | |
5 | 4 | a1i 11 | . . 3 ⊢ (1 ∈ ℤ → 1 ≠ 0) |
6 | 2 | prodfclim1 15650 | . . 3 ⊢ (1 ∈ ℤ → seq1( · , (ℕ × {1})) ⇝ 1) |
7 | 0ss 4336 | . . . 4 ⊢ ∅ ⊆ ℕ | |
8 | 7 | a1i 11 | . . 3 ⊢ (1 ∈ ℤ → ∅ ⊆ ℕ) |
9 | fvconst2g 7109 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = 1) | |
10 | noel 4270 | . . . . 5 ⊢ ¬ 𝑘 ∈ ∅ | |
11 | 10 | iffalsei 4475 | . . . 4 ⊢ if(𝑘 ∈ ∅, 𝐴, 1) = 1 |
12 | 9, 11 | eqtr4di 2794 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 1)) |
13 | 10 | pm2.21i 119 | . . . 4 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
14 | 13 | adantl 483 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
15 | 2, 3, 5, 6, 8, 12, 14 | zprodn0 15694 | . 2 ⊢ (1 ∈ ℤ → ∏𝑘 ∈ ∅ 𝐴 = 1) |
16 | 1, 15 | ax-mp 5 | 1 ⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ⊆ wss 3892 ∅c0 4262 ifcif 4465 {csn 4565 × cxp 5598 ‘cfv 6458 ℂcc 10915 0cc0 10917 1c1 10918 ℕcn 12019 ℤcz 12365 ∏cprod 15660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-prod 15661 |
This theorem is referenced by: prod1 15699 fprodf1o 15701 fprodcllem 15706 fprodmul 15715 fproddiv 15716 fprodfac 15728 fprodconst 15733 fprodn0 15734 fprod2d 15736 fprodmodd 15752 risefac0 15782 coprmprod 16411 coprmproddvds 16413 prmo0 16782 gausslemma2dlem4 26562 breprexp 32658 bcprod 33749 fprodexp 43184 fprodabs2 43185 mccl 43188 fprodcn 43190 fprodcncf 43490 dvmptfprod 43535 dvnprodlem3 43538 |
Copyright terms: Public domain | W3C validator |