Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifnp1 Structured version   Visualization version   GIF version

Theorem fwddifnp1 33739
Description: The value of the n-iterated forward difference at a successor. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifnp1.1 (𝜑𝑁 ∈ ℕ0)
fwddifnp1.2 (𝜑𝐴 ⊆ ℂ)
fwddifnp1.3 (𝜑𝐹:𝐴⟶ℂ)
fwddifnp1.4 (𝜑𝑋 ∈ ℂ)
fwddifnp1.5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑋 + 𝑘) ∈ 𝐴)
Assertion
Ref Expression
fwddifnp1 (𝜑 → (((𝑁 + 1) △n 𝐹)‘𝑋) = (((𝑁n 𝐹)‘(𝑋 + 1)) − ((𝑁n 𝐹)‘𝑋)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑋   𝑘,𝑁   𝜑,𝑘

Proof of Theorem fwddifnp1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fwddifnp1.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
2 elfzelz 12902 . . . . . . 7 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
3 bcpasc 13677 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
41, 2, 3syl2an 598 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
54oveq1d 7150 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6 bccl 13678 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
71, 2, 6syl2an 598 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
87nn0cnd 11945 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℂ)
9 peano2zm 12013 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
102, 9syl 17 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
11 bccl 13678 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
121, 10, 11syl2an 598 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
1312nn0cnd 11945 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
148, 13addcomd 10831 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁C(𝑘 − 1)) + (𝑁C𝑘)))
1514oveq1d 7150 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) + (𝑁C𝑘)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
16 peano2nn0 11925 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
171, 16syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ∈ ℕ0)
1817nn0zd 12073 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
19 zsubcl 12012 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) − 𝑘) ∈ ℤ)
2018, 2, 19syl2an 598 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℤ)
21 m1expcl 13448 . . . . . . . . . . 11 (((𝑁 + 1) − 𝑘) ∈ ℤ → (-1↑((𝑁 + 1) − 𝑘)) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) ∈ ℤ)
2322zcnd 12076 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
24 fwddifnp1.3 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
2524adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐹:𝐴⟶ℂ)
26 fwddifnp1.5 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑋 + 𝑘) ∈ 𝐴)
2725, 26ffvelrnd 6829 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐹‘(𝑋 + 𝑘)) ∈ ℂ)
2823, 27mulcld 10650 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) ∈ ℂ)
2913, 8, 28adddird 10655 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) + (𝑁C𝑘)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
3015, 29eqtrd 2833 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
311adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
3231nn0cnd 11945 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℂ)
332adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
3433zcnd 12076 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℂ)
35 1cnd 10625 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 1 ∈ ℂ)
3632, 34, 35subsub3d 11016 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁 − (𝑘 − 1)) = ((𝑁 + 1) − 𝑘))
3736eqcomd 2804 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) = (𝑁 − (𝑘 − 1)))
3837oveq2d 7151 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = (-1↑(𝑁 − (𝑘 − 1))))
3938oveq1d 7150 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))
4039oveq2d 7151 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
4132, 35, 34addsubd 11007 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
4241oveq2d 7151 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = (-1↑((𝑁𝑘) + 1)))
43 neg1cn 11739 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
4443a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → -1 ∈ ℂ)
45 neg1ne0 11741 . . . . . . . . . . . . . . 15 -1 ≠ 0
4645a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → -1 ≠ 0)
471nn0zd 12073 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
48 zsubcl 12012 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
4947, 2, 48syl2an 598 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁𝑘) ∈ ℤ)
5044, 46, 49expp1zd 13515 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁𝑘) + 1)) = ((-1↑(𝑁𝑘)) · -1))
5142, 50eqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = ((-1↑(𝑁𝑘)) · -1))
52 m1expcl 13448 . . . . . . . . . . . . . . 15 ((𝑁𝑘) ∈ ℤ → (-1↑(𝑁𝑘)) ∈ ℤ)
5349, 52syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁𝑘)) ∈ ℤ)
5453zcnd 12076 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁𝑘)) ∈ ℂ)
5554, 44mulcomd 10651 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑(𝑁𝑘)) · -1) = (-1 · (-1↑(𝑁𝑘))))
5654mulm1d 11081 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1 · (-1↑(𝑁𝑘))) = -(-1↑(𝑁𝑘)))
5751, 55, 563eqtrd 2837 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑((𝑁 + 1) − 𝑘)) = -(-1↑(𝑁𝑘)))
5857oveq1d 7150 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (-(-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
5954, 27mulneg1d 11082 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-(-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))) = -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
6058, 59eqtrd 2833 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
6160oveq2d 7151 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C𝑘) · -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6254, 27mulcld 10650 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))) ∈ ℂ)
638, 62mulneg2d 11083 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · -((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6461, 63eqtrd 2833 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
6540, 64oveq12d 7153 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) + -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
66 zsubcl 12012 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑘 − 1) ∈ ℤ) → (𝑁 − (𝑘 − 1)) ∈ ℤ)
6747, 10, 66syl2an 598 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁 − (𝑘 − 1)) ∈ ℤ)
68 m1expcl 13448 . . . . . . . . . . 11 ((𝑁 − (𝑘 − 1)) ∈ ℤ → (-1↑(𝑁 − (𝑘 − 1))) ∈ ℤ)
6967, 68syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁 − (𝑘 − 1))) ∈ ℤ)
7069zcnd 12076 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (-1↑(𝑁 − (𝑘 − 1))) ∈ ℂ)
7170, 27mulcld 10650 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))) ∈ ℂ)
7213, 71mulcld 10650 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
738, 62mulcld 10650 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
7472, 73negsubd 10992 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) + -((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
7530, 65, 743eqtrd 2837 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
765, 75eqtr3d 2835 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
7776sumeq2dv 15052 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
78 fzfid 13336 . . . 4 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
7978, 72, 73fsumsub 15135 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
80 nn0uz 12268 . . . . . . . 8 0 = (ℤ‘0)
8117, 80eleqtrdi 2900 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ (ℤ‘0))
82 oveq1 7142 . . . . . . . . 9 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
8382oveq2d 7151 . . . . . . . 8 (𝑘 = 0 → (𝑁C(𝑘 − 1)) = (𝑁C(0 − 1)))
8482oveq2d 7151 . . . . . . . . . 10 (𝑘 = 0 → (𝑁 − (𝑘 − 1)) = (𝑁 − (0 − 1)))
8584oveq2d 7151 . . . . . . . . 9 (𝑘 = 0 → (-1↑(𝑁 − (𝑘 − 1))) = (-1↑(𝑁 − (0 − 1))))
86 oveq2 7143 . . . . . . . . . 10 (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0))
8786fveq2d 6649 . . . . . . . . 9 (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0)))
8885, 87oveq12d 7153 . . . . . . . 8 (𝑘 = 0 → ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))) = ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0))))
8983, 88oveq12d 7153 . . . . . . 7 (𝑘 = 0 → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))))
9081, 72, 89fsum1p 15100 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = (((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))))
91 df-neg 10862 . . . . . . . . . . 11 -1 = (0 − 1)
9291oveq2i 7146 . . . . . . . . . 10 (𝑁C-1) = (𝑁C(0 − 1))
93 bcneg1 33081 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)
941, 93syl 17 . . . . . . . . . 10 (𝜑 → (𝑁C-1) = 0)
9592, 94syl5eqr 2847 . . . . . . . . 9 (𝜑 → (𝑁C(0 − 1)) = 0)
9695oveq1d 7150 . . . . . . . 8 (𝜑 → ((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) = (0 · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))))
97 0z 11980 . . . . . . . . . . . . . . 15 0 ∈ ℤ
98 1z 12000 . . . . . . . . . . . . . . 15 1 ∈ ℤ
99 zsubcl 12012 . . . . . . . . . . . . . . 15 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
10097, 98, 99mp2an 691 . . . . . . . . . . . . . 14 (0 − 1) ∈ ℤ
101100a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0 − 1) ∈ ℤ)
10247, 101zsubcld 12080 . . . . . . . . . . . 12 (𝜑 → (𝑁 − (0 − 1)) ∈ ℤ)
103 m1expcl 13448 . . . . . . . . . . . 12 ((𝑁 − (0 − 1)) ∈ ℤ → (-1↑(𝑁 − (0 − 1))) ∈ ℤ)
104102, 103syl 17 . . . . . . . . . . 11 (𝜑 → (-1↑(𝑁 − (0 − 1))) ∈ ℤ)
105104zcnd 12076 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 − (0 − 1))) ∈ ℂ)
106 eluzfz1 12909 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑁 + 1)))
10781, 106syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...(𝑁 + 1)))
10826ralrimiva 3149 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴)
10986eleq1d 2874 . . . . . . . . . . . . 13 (𝑘 = 0 → ((𝑋 + 𝑘) ∈ 𝐴 ↔ (𝑋 + 0) ∈ 𝐴))
110109rspcva 3569 . . . . . . . . . . . 12 ((0 ∈ (0...(𝑁 + 1)) ∧ ∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴) → (𝑋 + 0) ∈ 𝐴)
111107, 108, 110syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑋 + 0) ∈ 𝐴)
11224, 111ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝑋 + 0)) ∈ ℂ)
113105, 112mulcld 10650 . . . . . . . . 9 (𝜑 → ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0))) ∈ ℂ)
114113mul02d 10827 . . . . . . . 8 (𝜑 → (0 · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) = 0)
11596, 114eqtrd 2833 . . . . . . 7 (𝜑 → ((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) = 0)
116115oveq1d 7150 . . . . . 6 (𝜑 → (((𝑁C(0 − 1)) · ((-1↑(𝑁 − (0 − 1))) · (𝐹‘(𝑋 + 0)))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))) = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))))
117 fzfid 13336 . . . . . . . 8 (𝜑 → ((0 + 1)...(𝑁 + 1)) ∈ Fin)
118 olc 865 . . . . . . . . . 10 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1))))
119 elfzp12 12981 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ‘0) → (𝑘 ∈ (0...(𝑁 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))))
12081, 119syl 17 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))))
121120biimpar 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ (0...(𝑁 + 1)))
122118, 121sylan2 595 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
123122, 72syldan 594 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
124117, 123fsumcl 15082 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
125124addid2d 10830 . . . . . 6 (𝜑 → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
12690, 116, 1253eqtrd 2837 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
127 fwddifnp1.4 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
128127adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑋 ∈ ℂ)
129 1cnd 10625 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈ ℂ)
130 elfzelz 12902 . . . . . . . . . . . 12 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℤ)
131130zcnd 12076 . . . . . . . . . . 11 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℂ)
132131adantl 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℂ)
133128, 129, 132ppncand 11026 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑋 + 1) + (𝑘 − 1)) = (𝑋 + 𝑘))
134133fveq2d 6649 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐹‘((𝑋 + 1) + (𝑘 − 1))) = (𝐹‘(𝑋 + 𝑘)))
135134oveq2d 7151 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1)))) = ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘))))
136135oveq2d 7151 . . . . . 6 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))) = ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
137136sumeq2dv 15052 . . . . 5 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))))
138 oveq2 7143 . . . . . . . 8 (𝑗 = 𝑘 → (𝑁C𝑗) = (𝑁C𝑘))
139 oveq2 7143 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑁𝑗) = (𝑁𝑘))
140139oveq2d 7151 . . . . . . . . 9 (𝑗 = 𝑘 → (-1↑(𝑁𝑗)) = (-1↑(𝑁𝑘)))
141 oveq2 7143 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝑋 + 1) + 𝑗) = ((𝑋 + 1) + 𝑘))
142141fveq2d 6649 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐹‘((𝑋 + 1) + 𝑗)) = (𝐹‘((𝑋 + 1) + 𝑘)))
143140, 142oveq12d 7153 . . . . . . . 8 (𝑗 = 𝑘 → ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗))) = ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘))))
144138, 143oveq12d 7153 . . . . . . 7 (𝑗 = 𝑘 → ((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
145144cbvsumv 15045 . . . . . 6 Σ𝑗 ∈ (0...𝑁)((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘))))
146 1zzd 12001 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
147 0zd 11981 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
148 elfzelz 12902 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
149 bccl 13678 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑁C𝑗) ∈ ℕ0)
150149nn0cnd 11945 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑁C𝑗) ∈ ℂ)
1511, 148, 150syl2an 598 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑁C𝑗) ∈ ℂ)
152 zsubcl 12012 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑁𝑗) ∈ ℤ)
15347, 148, 152syl2an 598 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑁𝑗) ∈ ℤ)
154 m1expcl 13448 . . . . . . . . . . 11 ((𝑁𝑗) ∈ ℤ → (-1↑(𝑁𝑗)) ∈ ℤ)
155153, 154syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (-1↑(𝑁𝑗)) ∈ ℤ)
156155zcnd 12076 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (-1↑(𝑁𝑗)) ∈ ℂ)
15724adantr 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐹:𝐴⟶ℂ)
158127adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑋 ∈ ℂ)
159 1cnd 10625 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 1 ∈ ℂ)
160148zcnd 12076 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℂ)
161160adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℂ)
162158, 159, 161addassd 10652 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑗) = (𝑋 + (1 + 𝑗)))
163159, 161addcomd 10831 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → (1 + 𝑗) = (𝑗 + 1))
164163oveq2d 7151 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋 + (1 + 𝑗)) = (𝑋 + (𝑗 + 1)))
165162, 164eqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑗) = (𝑋 + (𝑗 + 1)))
166 fzp1elp1 12955 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ (0...(𝑁 + 1)))
167 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑗 + 1) → (𝑋 + 𝑘) = (𝑋 + (𝑗 + 1)))
168167eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑘 = (𝑗 + 1) → ((𝑋 + 𝑘) ∈ 𝐴 ↔ (𝑋 + (𝑗 + 1)) ∈ 𝐴))
169168rspccv 3568 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴 → ((𝑗 + 1) ∈ (0...(𝑁 + 1)) → (𝑋 + (𝑗 + 1)) ∈ 𝐴))
170108, 169syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑗 + 1) ∈ (0...(𝑁 + 1)) → (𝑋 + (𝑗 + 1)) ∈ 𝐴))
171170imp 410 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑗 + 1)) ∈ 𝐴)
172166, 171sylan2 595 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑋 + (𝑗 + 1)) ∈ 𝐴)
173165, 172eqeltrd 2890 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑗) ∈ 𝐴)
174157, 173ffvelrnd 6829 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐹‘((𝑋 + 1) + 𝑗)) ∈ ℂ)
175156, 174mulcld 10650 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗))) ∈ ℂ)
176151, 175mulcld 10650 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) ∈ ℂ)
177 oveq2 7143 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (𝑁C𝑗) = (𝑁C(𝑘 − 1)))
178 oveq2 7143 . . . . . . . . . 10 (𝑗 = (𝑘 − 1) → (𝑁𝑗) = (𝑁 − (𝑘 − 1)))
179178oveq2d 7151 . . . . . . . . 9 (𝑗 = (𝑘 − 1) → (-1↑(𝑁𝑗)) = (-1↑(𝑁 − (𝑘 − 1))))
180 oveq2 7143 . . . . . . . . . 10 (𝑗 = (𝑘 − 1) → ((𝑋 + 1) + 𝑗) = ((𝑋 + 1) + (𝑘 − 1)))
181180fveq2d 6649 . . . . . . . . 9 (𝑗 = (𝑘 − 1) → (𝐹‘((𝑋 + 1) + 𝑗)) = (𝐹‘((𝑋 + 1) + (𝑘 − 1))))
182179, 181oveq12d 7153 . . . . . . . 8 (𝑗 = (𝑘 − 1) → ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗))) = ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1)))))
183177, 182oveq12d 7153 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = ((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))))
184146, 147, 47, 176, 183fsumshft 15127 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑁)((𝑁C𝑗) · ((-1↑(𝑁𝑗)) · (𝐹‘((𝑋 + 1) + 𝑗)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))))
185145, 184syl5reqr 2848 . . . . 5 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘((𝑋 + 1) + (𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
186126, 137, 1853eqtr2d 2839 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
1871, 80eleqtrdi 2900 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
188 oveq2 7143 . . . . . . 7 (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1)))
189 oveq2 7143 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑁𝑘) = (𝑁 − (𝑁 + 1)))
190189oveq2d 7151 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (-1↑(𝑁𝑘)) = (-1↑(𝑁 − (𝑁 + 1))))
191 oveq2 7143 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑋 + 𝑘) = (𝑋 + (𝑁 + 1)))
192191fveq2d 6649 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + (𝑁 + 1))))
193190, 192oveq12d 7153 . . . . . . 7 (𝑘 = (𝑁 + 1) → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))) = ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))))
194188, 193oveq12d 7153 . . . . . 6 (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))))
195187, 73, 194fsump1 15103 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))))))
196 bcval 13660 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (𝑁C(𝑁 + 1)) = if((𝑁 + 1) ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − (𝑁 + 1))) · (!‘(𝑁 + 1)))), 0))
1971, 18, 196syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑁C(𝑁 + 1)) = if((𝑁 + 1) ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − (𝑁 + 1))) · (!‘(𝑁 + 1)))), 0))
198 fzp1nel 12986 . . . . . . . . . 10 ¬ (𝑁 + 1) ∈ (0...𝑁)
199198iffalsei 4435 . . . . . . . . 9 if((𝑁 + 1) ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − (𝑁 + 1))) · (!‘(𝑁 + 1)))), 0) = 0
200197, 199eqtrdi 2849 . . . . . . . 8 (𝜑 → (𝑁C(𝑁 + 1)) = 0)
201200oveq1d 7150 . . . . . . 7 (𝜑 → ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))) = (0 · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))))
20247, 18zsubcld 12080 . . . . . . . . . 10 (𝜑 → (𝑁 − (𝑁 + 1)) ∈ ℤ)
203 m1expcl 13448 . . . . . . . . . . 11 ((𝑁 − (𝑁 + 1)) ∈ ℤ → (-1↑(𝑁 − (𝑁 + 1))) ∈ ℤ)
204203zcnd 12076 . . . . . . . . . 10 ((𝑁 − (𝑁 + 1)) ∈ ℤ → (-1↑(𝑁 − (𝑁 + 1))) ∈ ℂ)
205202, 204syl 17 . . . . . . . . 9 (𝜑 → (-1↑(𝑁 − (𝑁 + 1))) ∈ ℂ)
206 eluzfz2 12910 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ‘0) → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
20781, 206syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ (0...(𝑁 + 1)))
208191eleq1d 2874 . . . . . . . . . . . 12 (𝑘 = (𝑁 + 1) → ((𝑋 + 𝑘) ∈ 𝐴 ↔ (𝑋 + (𝑁 + 1)) ∈ 𝐴))
209208rspcv 3566 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (0...(𝑁 + 1)) → (∀𝑘 ∈ (0...(𝑁 + 1))(𝑋 + 𝑘) ∈ 𝐴 → (𝑋 + (𝑁 + 1)) ∈ 𝐴))
210207, 108, 209sylc 65 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑁 + 1)) ∈ 𝐴)
21124, 210ffvelrnd 6829 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑋 + (𝑁 + 1))) ∈ ℂ)
212205, 211mulcld 10650 . . . . . . . 8 (𝜑 → ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))) ∈ ℂ)
213212mul02d 10827 . . . . . . 7 (𝜑 → (0 · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))) = 0)
214201, 213eqtrd 2833 . . . . . 6 (𝜑 → ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1))))) = 0)
215214oveq2d 7151 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + ((𝑁C(𝑁 + 1)) · ((-1↑(𝑁 − (𝑁 + 1))) · (𝐹‘(𝑋 + (𝑁 + 1)))))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + 0))
216 fzfid 13336 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
217 fzelp1 12954 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
218217, 73sylan2 595 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
219216, 218fsumcl 15082 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ ℂ)
220219addid1d 10829 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) + 0) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
221195, 215, 2203eqtrd 2837 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
222186, 221oveq12d 7153 . . 3 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((-1↑(𝑁 − (𝑘 − 1))) · (𝐹‘(𝑋 + 𝑘)))) − Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))) − Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
22377, 79, 2223eqtrd 2837 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))) − Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
224 fwddifnp1.2 . . 3 (𝜑𝐴 ⊆ ℂ)
22517, 224, 24, 127, 26fwddifnval 33737 . 2 (𝜑 → (((𝑁 + 1) △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((-1↑((𝑁 + 1) − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
226 peano2cn 10801 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
227127, 226syl 17 . . . 4 (𝜑 → (𝑋 + 1) ∈ ℂ)
228127adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑋 ∈ ℂ)
229 1cnd 10625 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
230 elfzelz 12902 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
231230zcnd 12076 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
232231adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
233228, 229, 232addassd 10652 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑘) = (𝑋 + (1 + 𝑘)))
234229, 232addcomd 10831 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (1 + 𝑘) = (𝑘 + 1))
235234oveq2d 7151 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + (1 + 𝑘)) = (𝑋 + (𝑘 + 1)))
236233, 235eqtrd 2833 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑘) = (𝑋 + (𝑘 + 1)))
237 fzp1elp1 12955 . . . . . 6 (𝑘 ∈ (0...𝑁) → (𝑘 + 1) ∈ (0...(𝑁 + 1)))
238 oveq1 7142 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
239238eleq1d 2874 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗 + 1) ∈ (0...(𝑁 + 1)) ↔ (𝑘 + 1) ∈ (0...(𝑁 + 1))))
240239anbi2d 631 . . . . . . . 8 (𝑗 = 𝑘 → ((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁 + 1))) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (0...(𝑁 + 1)))))
241238oveq2d 7151 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑋 + (𝑗 + 1)) = (𝑋 + (𝑘 + 1)))
242241eleq1d 2874 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑋 + (𝑗 + 1)) ∈ 𝐴 ↔ (𝑋 + (𝑘 + 1)) ∈ 𝐴))
243240, 242imbi12d 348 . . . . . . 7 (𝑗 = 𝑘 → (((𝜑 ∧ (𝑗 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑗 + 1)) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑘 + 1)) ∈ 𝐴)))
244243, 171chvarvv 2005 . . . . . 6 ((𝜑 ∧ (𝑘 + 1) ∈ (0...(𝑁 + 1))) → (𝑋 + (𝑘 + 1)) ∈ 𝐴)
245237, 244sylan2 595 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + (𝑘 + 1)) ∈ 𝐴)
246236, 245eqeltrd 2890 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑋 + 1) + 𝑘) ∈ 𝐴)
2471, 224, 24, 227, 246fwddifnval 33737 . . 3 (𝜑 → ((𝑁n 𝐹)‘(𝑋 + 1)) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))))
248217, 26sylan2 595 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
2491, 224, 24, 127, 248fwddifnval 33737 . . 3 (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
250247, 249oveq12d 7153 . 2 (𝜑 → (((𝑁n 𝐹)‘(𝑋 + 1)) − ((𝑁n 𝐹)‘𝑋)) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘((𝑋 + 1) + 𝑘)))) − Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))))
251223, 225, 2503eqtr4d 2843 1 (𝜑 → (((𝑁 + 1) △n 𝐹)‘𝑋) = (((𝑁n 𝐹)‘(𝑋 + 1)) − ((𝑁n 𝐹)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881  ifcif 4425  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  cexp 13425  !cfa 13629  Ccbc 13658  Σcsu 15034  n cfwddifn 33734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-fwddifn 33735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator