MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssttrcl Structured version   Visualization version   GIF version

Theorem ssttrcl 9651
Description: If 𝑅 is a relation, then it is a subclass of its transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
ssttrcl (Rel 𝑅𝑅 ⊆ t++𝑅)

Proof of Theorem ssttrcl
Dummy variables 𝑥 𝑦 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 8586 . . . . . 6 1o ∈ ω
2 1on 8424 . . . . . . 7 1o ∈ On
32onirri 6430 . . . . . 6 ¬ 1o ∈ 1o
4 eldif 3920 . . . . . 6 (1o ∈ (ω ∖ 1o) ↔ (1o ∈ ω ∧ ¬ 1o ∈ 1o))
51, 3, 4mpbir2an 709 . . . . 5 1o ∈ (ω ∖ 1o)
6 vex 3449 . . . . . . . 8 𝑥 ∈ V
7 vex 3449 . . . . . . . 8 𝑦 ∈ V
86, 7ifex 4536 . . . . . . 7 if(𝑚 = ∅, 𝑥, 𝑦) ∈ V
9 eqid 2736 . . . . . . 7 (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))
108, 9fnmpti 6644 . . . . . 6 (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o
11 eqid 2736 . . . . . . 7 𝑥 = 𝑥
12 eqid 2736 . . . . . . 7 𝑦 = 𝑦
1311, 12pm3.2i 471 . . . . . 6 (𝑥 = 𝑥𝑦 = 𝑦)
14 1oex 8422 . . . . . . . . 9 1o ∈ V
1514sucex 7741 . . . . . . . 8 suc 1o ∈ V
1615mptex 7173 . . . . . . 7 (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) ∈ V
17 fneq1 6593 . . . . . . . 8 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓 Fn suc 1o ↔ (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o))
18 fveq1 6841 . . . . . . . . . . 11 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘∅) = ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅))
192onordi 6428 . . . . . . . . . . . . 13 Ord 1o
20 0elsuc 7770 . . . . . . . . . . . . 13 (Ord 1o → ∅ ∈ suc 1o)
2119, 20ax-mp 5 . . . . . . . . . . . 12 ∅ ∈ suc 1o
22 iftrue 4492 . . . . . . . . . . . . 13 (𝑚 = ∅ → if(𝑚 = ∅, 𝑥, 𝑦) = 𝑥)
2322, 9, 6fvmpt 6948 . . . . . . . . . . . 12 (∅ ∈ suc 1o → ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅) = 𝑥)
2421, 23ax-mp 5 . . . . . . . . . . 11 ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅) = 𝑥
2518, 24eqtrdi 2792 . . . . . . . . . 10 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘∅) = 𝑥)
2625eqeq1d 2738 . . . . . . . . 9 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘∅) = 𝑥𝑥 = 𝑥))
27 fveq1 6841 . . . . . . . . . . 11 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘1o) = ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o))
2814sucid 6399 . . . . . . . . . . . . 13 1o ∈ suc 1o
29 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑚 = 1o → (𝑚 = ∅ ↔ 1o = ∅))
3029ifbid 4509 . . . . . . . . . . . . . 14 (𝑚 = 1o → if(𝑚 = ∅, 𝑥, 𝑦) = if(1o = ∅, 𝑥, 𝑦))
31 1n0 8434 . . . . . . . . . . . . . . . . 17 1o ≠ ∅
3231neii 2945 . . . . . . . . . . . . . . . 16 ¬ 1o = ∅
3332iffalsei 4496 . . . . . . . . . . . . . . 15 if(1o = ∅, 𝑥, 𝑦) = 𝑦
3433, 7eqeltri 2834 . . . . . . . . . . . . . 14 if(1o = ∅, 𝑥, 𝑦) ∈ V
3530, 9, 34fvmpt 6948 . . . . . . . . . . . . 13 (1o ∈ suc 1o → ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o) = if(1o = ∅, 𝑥, 𝑦))
3628, 35ax-mp 5 . . . . . . . . . . . 12 ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o) = if(1o = ∅, 𝑥, 𝑦)
3736, 33eqtri 2764 . . . . . . . . . . 11 ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o) = 𝑦
3827, 37eqtrdi 2792 . . . . . . . . . 10 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘1o) = 𝑦)
3938eqeq1d 2738 . . . . . . . . 9 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘1o) = 𝑦𝑦 = 𝑦))
4026, 39anbi12d 631 . . . . . . . 8 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ↔ (𝑥 = 𝑥𝑦 = 𝑦)))
4125, 38breq12d 5118 . . . . . . . 8 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦))
4217, 40, 413anbi123d 1436 . . . . . . 7 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) ↔ ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o ∧ (𝑥 = 𝑥𝑦 = 𝑦) ∧ 𝑥𝑅𝑦)))
4316, 42spcev 3565 . . . . . 6 (((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o ∧ (𝑥 = 𝑥𝑦 = 𝑦) ∧ 𝑥𝑅𝑦) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)))
4410, 13, 43mp3an12 1451 . . . . 5 (𝑥𝑅𝑦 → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)))
45 suceq 6383 . . . . . . . . 9 (𝑛 = 1o → suc 𝑛 = suc 1o)
4645fneq2d 6596 . . . . . . . 8 (𝑛 = 1o → (𝑓 Fn suc 𝑛𝑓 Fn suc 1o))
47 fveqeq2 6851 . . . . . . . . 9 (𝑛 = 1o → ((𝑓𝑛) = 𝑦 ↔ (𝑓‘1o) = 𝑦))
4847anbi2d 629 . . . . . . . 8 (𝑛 = 1o → (((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦)))
49 raleq 3309 . . . . . . . . 9 (𝑛 = 1o → (∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚 ∈ 1o (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
50 df1o2 8419 . . . . . . . . . . 11 1o = {∅}
5150raleqi 3311 . . . . . . . . . 10 (∀𝑚 ∈ 1o (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚 ∈ {∅} (𝑓𝑚)𝑅(𝑓‘suc 𝑚))
52 0ex 5264 . . . . . . . . . . 11 ∅ ∈ V
53 fveq2 6842 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑓𝑚) = (𝑓‘∅))
54 suceq 6383 . . . . . . . . . . . . . 14 (𝑚 = ∅ → suc 𝑚 = suc ∅)
55 df-1o 8412 . . . . . . . . . . . . . 14 1o = suc ∅
5654, 55eqtr4di 2794 . . . . . . . . . . . . 13 (𝑚 = ∅ → suc 𝑚 = 1o)
5756fveq2d 6846 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑓‘suc 𝑚) = (𝑓‘1o))
5853, 57breq12d 5118 . . . . . . . . . . 11 (𝑚 = ∅ → ((𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
5952, 58ralsn 4642 . . . . . . . . . 10 (∀𝑚 ∈ {∅} (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
6051, 59bitri 274 . . . . . . . . 9 (∀𝑚 ∈ 1o (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
6149, 60bitrdi 286 . . . . . . . 8 (𝑛 = 1o → (∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
6246, 48, 613anbi123d 1436 . . . . . . 7 (𝑛 = 1o → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
6362exbidv 1924 . . . . . 6 (𝑛 = 1o → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
6463rspcev 3581 . . . . 5 ((1o ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))) → ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
655, 44, 64sylancr 587 . . . 4 (𝑥𝑅𝑦 → ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
66 df-br 5106 . . . 4 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
67 brttrcl 9649 . . . . 5 (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
68 df-br 5106 . . . . 5 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
6967, 68bitr3i 276 . . . 4 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
7065, 66, 693imtr3i 290 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
7170gen2 1798 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
72 ssrel 5738 . 2 (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)))
7371, 72mpbiri 257 1 (Rel 𝑅𝑅 ⊆ t++𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087  wal 1539   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  c0 4282  ifcif 4486  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188  Rel wrel 5638  Ord word 6316  suc csuc 6319   Fn wfn 6491  cfv 6496  ωcom 7802  1oc1o 8405  t++cttrcl 9643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-ttrcl 9644
This theorem is referenced by:  ttrclco  9654  cottrcl  9655  dmttrcl  9657  rnttrcl  9658  dfttrcl2  9660  frmin  9685  frrlem16  9694  frr1  9695
  Copyright terms: Public domain W3C validator