| Step | Hyp | Ref
| Expression |
| 1 | | 1onn 8678 |
. . . . . 6
⊢
1o ∈ ω |
| 2 | | 1on 8518 |
. . . . . . 7
⊢
1o ∈ On |
| 3 | 2 | onirri 6497 |
. . . . . 6
⊢ ¬
1o ∈ 1o |
| 4 | | eldif 3961 |
. . . . . 6
⊢
(1o ∈ (ω ∖ 1o) ↔
(1o ∈ ω ∧ ¬ 1o ∈
1o)) |
| 5 | 1, 3, 4 | mpbir2an 711 |
. . . . 5
⊢
1o ∈ (ω ∖ 1o) |
| 6 | | vex 3484 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 7 | | vex 3484 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 8 | 6, 7 | ifex 4576 |
. . . . . . 7
⊢ if(𝑚 = ∅, 𝑥, 𝑦) ∈ V |
| 9 | | eqid 2737 |
. . . . . . 7
⊢ (𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦)) = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) |
| 10 | 8, 9 | fnmpti 6711 |
. . . . . 6
⊢ (𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦)) Fn suc 1o |
| 11 | | eqid 2737 |
. . . . . . 7
⊢ 𝑥 = 𝑥 |
| 12 | | eqid 2737 |
. . . . . . 7
⊢ 𝑦 = 𝑦 |
| 13 | 11, 12 | pm3.2i 470 |
. . . . . 6
⊢ (𝑥 = 𝑥 ∧ 𝑦 = 𝑦) |
| 14 | | 1oex 8516 |
. . . . . . . . 9
⊢
1o ∈ V |
| 15 | 14 | sucex 7826 |
. . . . . . . 8
⊢ suc
1o ∈ V |
| 16 | 15 | mptex 7243 |
. . . . . . 7
⊢ (𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦)) ∈ V |
| 17 | | fneq1 6659 |
. . . . . . . 8
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓 Fn suc 1o ↔ (𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦)) Fn suc 1o)) |
| 18 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘∅) = ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅)) |
| 19 | 2 | onordi 6495 |
. . . . . . . . . . . . 13
⊢ Ord
1o |
| 20 | | 0elsuc 7855 |
. . . . . . . . . . . . 13
⊢ (Ord
1o → ∅ ∈ suc 1o) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ∅
∈ suc 1o |
| 22 | | iftrue 4531 |
. . . . . . . . . . . . 13
⊢ (𝑚 = ∅ → if(𝑚 = ∅, 𝑥, 𝑦) = 𝑥) |
| 23 | 22, 9, 6 | fvmpt 7016 |
. . . . . . . . . . . 12
⊢ (∅
∈ suc 1o → ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅) = 𝑥) |
| 24 | 21, 23 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦))‘∅) = 𝑥 |
| 25 | 18, 24 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘∅) = 𝑥) |
| 26 | 25 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘∅) = 𝑥 ↔ 𝑥 = 𝑥)) |
| 27 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘1o) = ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o)) |
| 28 | 14 | sucid 6466 |
. . . . . . . . . . . . 13
⊢
1o ∈ suc 1o |
| 29 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 1o → (𝑚 = ∅ ↔ 1o
= ∅)) |
| 30 | 29 | ifbid 4549 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 1o → if(𝑚 = ∅, 𝑥, 𝑦) = if(1o = ∅, 𝑥, 𝑦)) |
| 31 | | 1n0 8526 |
. . . . . . . . . . . . . . . . 17
⊢
1o ≠ ∅ |
| 32 | 31 | neii 2942 |
. . . . . . . . . . . . . . . 16
⊢ ¬
1o = ∅ |
| 33 | 32 | iffalsei 4535 |
. . . . . . . . . . . . . . 15
⊢
if(1o = ∅, 𝑥, 𝑦) = 𝑦 |
| 34 | 33, 7 | eqeltri 2837 |
. . . . . . . . . . . . . 14
⊢
if(1o = ∅, 𝑥, 𝑦) ∈ V |
| 35 | 30, 9, 34 | fvmpt 7016 |
. . . . . . . . . . . . 13
⊢
(1o ∈ suc 1o → ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o) = if(1o =
∅, 𝑥, 𝑦)) |
| 36 | 28, 35 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦))‘1o) = if(1o =
∅, 𝑥, 𝑦) |
| 37 | 36, 33 | eqtri 2765 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦))‘1o) = 𝑦 |
| 38 | 27, 37 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘1o) = 𝑦) |
| 39 | 38 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘1o) = 𝑦 ↔ 𝑦 = 𝑦)) |
| 40 | 26, 39 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ↔ (𝑥 = 𝑥 ∧ 𝑦 = 𝑦))) |
| 41 | 25, 38 | breq12d 5156 |
. . . . . . . 8
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦)) |
| 42 | 17, 40, 41 | 3anbi123d 1438 |
. . . . . . 7
⊢ (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) ↔ ((𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦)) Fn suc 1o ∧ (𝑥 = 𝑥 ∧ 𝑦 = 𝑦) ∧ 𝑥𝑅𝑦))) |
| 43 | 16, 42 | spcev 3606 |
. . . . . 6
⊢ (((𝑚 ∈ suc 1o
↦ if(𝑚 = ∅,
𝑥, 𝑦)) Fn suc 1o ∧ (𝑥 = 𝑥 ∧ 𝑦 = 𝑦) ∧ 𝑥𝑅𝑦) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))) |
| 44 | 10, 13, 43 | mp3an12 1453 |
. . . . 5
⊢ (𝑥𝑅𝑦 → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))) |
| 45 | | suceq 6450 |
. . . . . . . . 9
⊢ (𝑛 = 1o → suc
𝑛 = suc
1o) |
| 46 | 45 | fneq2d 6662 |
. . . . . . . 8
⊢ (𝑛 = 1o → (𝑓 Fn suc 𝑛 ↔ 𝑓 Fn suc 1o)) |
| 47 | | fveqeq2 6915 |
. . . . . . . . 9
⊢ (𝑛 = 1o → ((𝑓‘𝑛) = 𝑦 ↔ (𝑓‘1o) = 𝑦)) |
| 48 | 47 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑛 = 1o → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦))) |
| 49 | | raleq 3323 |
. . . . . . . . 9
⊢ (𝑛 = 1o →
(∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚 ∈ 1o (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))) |
| 50 | | df1o2 8513 |
. . . . . . . . . . 11
⊢
1o = {∅} |
| 51 | 50 | raleqi 3324 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
1o (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚 ∈ {∅} (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) |
| 52 | | 0ex 5307 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 53 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑚 = ∅ → (𝑓‘𝑚) = (𝑓‘∅)) |
| 54 | | suceq 6450 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) |
| 55 | | df-1o 8506 |
. . . . . . . . . . . . . 14
⊢
1o = suc ∅ |
| 56 | 54, 55 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ (𝑚 = ∅ → suc 𝑚 =
1o) |
| 57 | 56 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑚 = ∅ → (𝑓‘suc 𝑚) = (𝑓‘1o)) |
| 58 | 53, 57 | breq12d 5156 |
. . . . . . . . . . 11
⊢ (𝑚 = ∅ → ((𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o))) |
| 59 | 52, 58 | ralsn 4681 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
{∅} (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o)) |
| 60 | 51, 59 | bitri 275 |
. . . . . . . . 9
⊢
(∀𝑚 ∈
1o (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o)) |
| 61 | 49, 60 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑛 = 1o →
(∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o))) |
| 62 | 46, 48, 61 | 3anbi123d 1438 |
. . . . . . 7
⊢ (𝑛 = 1o → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)))) |
| 63 | 62 | exbidv 1921 |
. . . . . 6
⊢ (𝑛 = 1o →
(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)))) |
| 64 | 63 | rspcev 3622 |
. . . . 5
⊢
((1o ∈ (ω ∖ 1o) ∧
∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))) → ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))) |
| 65 | 5, 44, 64 | sylancr 587 |
. . . 4
⊢ (𝑥𝑅𝑦 → ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))) |
| 66 | | df-br 5144 |
. . . 4
⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 67 | | brttrcl 9753 |
. . . . 5
⊢ (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))) |
| 68 | | df-br 5144 |
. . . . 5
⊢ (𝑥t++𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ t++𝑅) |
| 69 | 67, 68 | bitr3i 277 |
. . . 4
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) ↔ 〈𝑥, 𝑦〉 ∈ t++𝑅) |
| 70 | 65, 66, 69 | 3imtr3i 291 |
. . 3
⊢
(〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ t++𝑅) |
| 71 | 70 | gen2 1796 |
. 2
⊢
∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ t++𝑅) |
| 72 | | ssrel 5792 |
. 2
⊢ (Rel
𝑅 → (𝑅 ⊆ t++𝑅 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ t++𝑅))) |
| 73 | 71, 72 | mpbiri 258 |
1
⊢ (Rel
𝑅 → 𝑅 ⊆ t++𝑅) |