Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssttrcl Structured version   Visualization version   GIF version

Theorem ssttrcl 33701
Description: If 𝑅 is a relation, then it is a subclass of its transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
ssttrcl (Rel 𝑅𝑅 ⊆ t++𝑅)

Proof of Theorem ssttrcl
Dummy variables 𝑥 𝑦 𝑓 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 8432 . . . . . 6 1o ∈ ω
2 1on 8274 . . . . . . 7 1o ∈ On
32onirri 6358 . . . . . 6 ¬ 1o ∈ 1o
4 eldif 3893 . . . . . 6 (1o ∈ (ω ∖ 1o) ↔ (1o ∈ ω ∧ ¬ 1o ∈ 1o))
51, 3, 4mpbir2an 707 . . . . 5 1o ∈ (ω ∖ 1o)
6 vex 3426 . . . . . . . 8 𝑥 ∈ V
7 vex 3426 . . . . . . . 8 𝑦 ∈ V
86, 7ifex 4506 . . . . . . 7 if(𝑚 = ∅, 𝑥, 𝑦) ∈ V
9 eqid 2738 . . . . . . 7 (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))
108, 9fnmpti 6560 . . . . . 6 (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o
11 eqid 2738 . . . . . . 7 𝑥 = 𝑥
12 eqid 2738 . . . . . . 7 𝑦 = 𝑦
1311, 12pm3.2i 470 . . . . . 6 (𝑥 = 𝑥𝑦 = 𝑦)
14 1oex 8280 . . . . . . . . 9 1o ∈ V
1514sucex 7633 . . . . . . . 8 suc 1o ∈ V
1615mptex 7081 . . . . . . 7 (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) ∈ V
17 fneq1 6508 . . . . . . . 8 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓 Fn suc 1o ↔ (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o))
18 fveq1 6755 . . . . . . . . . . 11 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘∅) = ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅))
192onordi 6356 . . . . . . . . . . . . 13 Ord 1o
20 0elsuc 7657 . . . . . . . . . . . . 13 (Ord 1o → ∅ ∈ suc 1o)
2119, 20ax-mp 5 . . . . . . . . . . . 12 ∅ ∈ suc 1o
22 iftrue 4462 . . . . . . . . . . . . 13 (𝑚 = ∅ → if(𝑚 = ∅, 𝑥, 𝑦) = 𝑥)
2322, 9, 6fvmpt 6857 . . . . . . . . . . . 12 (∅ ∈ suc 1o → ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅) = 𝑥)
2421, 23ax-mp 5 . . . . . . . . . . 11 ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘∅) = 𝑥
2518, 24eqtrdi 2795 . . . . . . . . . 10 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘∅) = 𝑥)
2625eqeq1d 2740 . . . . . . . . 9 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘∅) = 𝑥𝑥 = 𝑥))
27 fveq1 6755 . . . . . . . . . . 11 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘1o) = ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o))
2814sucid 6330 . . . . . . . . . . . . 13 1o ∈ suc 1o
29 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑚 = 1o → (𝑚 = ∅ ↔ 1o = ∅))
3029ifbid 4479 . . . . . . . . . . . . . 14 (𝑚 = 1o → if(𝑚 = ∅, 𝑥, 𝑦) = if(1o = ∅, 𝑥, 𝑦))
31 1n0 8286 . . . . . . . . . . . . . . . . 17 1o ≠ ∅
3231neii 2944 . . . . . . . . . . . . . . . 16 ¬ 1o = ∅
3332iffalsei 4466 . . . . . . . . . . . . . . 15 if(1o = ∅, 𝑥, 𝑦) = 𝑦
3433, 7eqeltri 2835 . . . . . . . . . . . . . 14 if(1o = ∅, 𝑥, 𝑦) ∈ V
3530, 9, 34fvmpt 6857 . . . . . . . . . . . . 13 (1o ∈ suc 1o → ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o) = if(1o = ∅, 𝑥, 𝑦))
3628, 35ax-mp 5 . . . . . . . . . . . 12 ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o) = if(1o = ∅, 𝑥, 𝑦)
3736, 33eqtri 2766 . . . . . . . . . . 11 ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦))‘1o) = 𝑦
3827, 37eqtrdi 2795 . . . . . . . . . 10 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (𝑓‘1o) = 𝑦)
3938eqeq1d 2740 . . . . . . . . 9 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘1o) = 𝑦𝑦 = 𝑦))
4026, 39anbi12d 630 . . . . . . . 8 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ↔ (𝑥 = 𝑥𝑦 = 𝑦)))
4125, 38breq12d 5083 . . . . . . . 8 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦))
4217, 40, 413anbi123d 1434 . . . . . . 7 (𝑓 = (𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) → ((𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) ↔ ((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o ∧ (𝑥 = 𝑥𝑦 = 𝑦) ∧ 𝑥𝑅𝑦)))
4316, 42spcev 3535 . . . . . 6 (((𝑚 ∈ suc 1o ↦ if(𝑚 = ∅, 𝑥, 𝑦)) Fn suc 1o ∧ (𝑥 = 𝑥𝑦 = 𝑦) ∧ 𝑥𝑅𝑦) → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)))
4410, 13, 43mp3an12 1449 . . . . 5 (𝑥𝑅𝑦 → ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)))
45 suceq 6316 . . . . . . . . 9 (𝑛 = 1o → suc 𝑛 = suc 1o)
4645fneq2d 6511 . . . . . . . 8 (𝑛 = 1o → (𝑓 Fn suc 𝑛𝑓 Fn suc 1o))
47 fveqeq2 6765 . . . . . . . . 9 (𝑛 = 1o → ((𝑓𝑛) = 𝑦 ↔ (𝑓‘1o) = 𝑦))
4847anbi2d 628 . . . . . . . 8 (𝑛 = 1o → (((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦)))
49 raleq 3333 . . . . . . . . 9 (𝑛 = 1o → (∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚 ∈ 1o (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
50 df1o2 8279 . . . . . . . . . . 11 1o = {∅}
5150raleqi 3337 . . . . . . . . . 10 (∀𝑚 ∈ 1o (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚 ∈ {∅} (𝑓𝑚)𝑅(𝑓‘suc 𝑚))
52 0ex 5226 . . . . . . . . . . 11 ∅ ∈ V
53 fveq2 6756 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑓𝑚) = (𝑓‘∅))
54 suceq 6316 . . . . . . . . . . . . . 14 (𝑚 = ∅ → suc 𝑚 = suc ∅)
55 df-1o 8267 . . . . . . . . . . . . . 14 1o = suc ∅
5654, 55eqtr4di 2797 . . . . . . . . . . . . 13 (𝑚 = ∅ → suc 𝑚 = 1o)
5756fveq2d 6760 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑓‘suc 𝑚) = (𝑓‘1o))
5853, 57breq12d 5083 . . . . . . . . . . 11 (𝑚 = ∅ → ((𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
5952, 58ralsn 4614 . . . . . . . . . 10 (∀𝑚 ∈ {∅} (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
6051, 59bitri 274 . . . . . . . . 9 (∀𝑚 ∈ 1o (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
6149, 60bitrdi 286 . . . . . . . 8 (𝑛 = 1o → (∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
6246, 48, 613anbi123d 1434 . . . . . . 7 (𝑛 = 1o → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ (𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
6362exbidv 1925 . . . . . 6 (𝑛 = 1o → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
6463rspcev 3552 . . . . 5 ((1o ∈ (ω ∖ 1o) ∧ ∃𝑓(𝑓 Fn suc 1o ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))) → ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
655, 44, 64sylancr 586 . . . 4 (𝑥𝑅𝑦 → ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
66 df-br 5071 . . . 4 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
67 brttrcl 33699 . . . . 5 (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)))
68 df-br 5071 . . . . 5 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
6967, 68bitr3i 276 . . . 4 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
7065, 66, 693imtr3i 290 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
7170gen2 1800 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
72 ssrel 5683 . 2 (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ t++𝑅)))
7371, 72mpbiri 257 1 (Rel 𝑅𝑅 ⊆ t++𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  c0 4253  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  Rel wrel 5585  Ord word 6250  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  1oc1o 8260  t++cttrcl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-ttrcl 33694
This theorem is referenced by:  ttrclco  33704  cottrcl  33705  dmttrcl  33707  rnttrcl  33708  dfttrcl2  33710
  Copyright terms: Public domain W3C validator