MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg0 Structured version   Visualization version   GIF version

Theorem itg0 24993
Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
itg0 ∫∅𝐴 d𝑥 = 0

Proof of Theorem itg0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (ℜ‘(𝐴 / (i↑𝑘))) = (ℜ‘(𝐴 / (i↑𝑘)))
21dfitg 24983 . 2 ∫∅𝐴 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))))
3 ifan 4518 . . . . . . . . . . 11 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0)
4 noel 4270 . . . . . . . . . . . 12 ¬ 𝑥 ∈ ∅
54iffalsei 4475 . . . . . . . . . . 11 if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) = 0
63, 5eqtri 2764 . . . . . . . . . 10 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = 0
76mpteq2i 5186 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0)
8 fconstmpt 5660 . . . . . . . . 9 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
97, 8eqtr4i 2767 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (ℝ × {0})
109fveq2i 6807 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0}))
11 itg20 24951 . . . . . . 7 (∫2‘(ℝ × {0})) = 0
1210, 11eqtri 2764 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = 0
1312oveq2i 7318 . . . . 5 ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0)
14 ax-icn 10980 . . . . . . 7 i ∈ ℂ
15 elfznn0 13399 . . . . . . 7 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
16 expcl 13850 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1714, 15, 16sylancr 588 . . . . . 6 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
1817mul01d 11224 . . . . 5 (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0)
1913, 18eqtrid 2788 . . . 4 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0)
2019sumeq2i 15460 . . 3 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0
21 fzfi 13742 . . . . 5 (0...3) ∈ Fin
2221olci 864 . . . 4 ((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin)
23 sumz 15483 . . . 4 (((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0)
2422, 23ax-mp 5 . . 3 Σ𝑘 ∈ (0...3)0 = 0
2520, 24eqtri 2764 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0
262, 25eqtri 2764 1 ∫∅𝐴 d𝑥 = 0
Colors of variables: wff setvar class
Syntax hints:  wa 397  wo 845   = wceq 1539  wcel 2104  wss 3892  c0 4262  ifcif 4465  {csn 4565   class class class wbr 5081  cmpt 5164   × cxp 5598  cfv 6458  (class class class)co 7307  Fincfn 8764  cc 10919  cr 10920  0cc0 10921  ici 10923   · cmul 10926  cle 11060   / cdiv 11682  3c3 12079  0cn0 12283  cuz 12632  ...cfz 13289  cexp 13832  cre 14857  Σcsu 15446  2citg2 24829  citg 24831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999  ax-addf 11000
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-disj 5047  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-ofr 7566  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9249  df-inf 9250  df-oi 9317  df-dju 9707  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-q 12739  df-rp 12781  df-xadd 12899  df-ioo 13133  df-ico 13135  df-icc 13136  df-fz 13290  df-fzo 13433  df-fl 13562  df-seq 13772  df-exp 13833  df-hash 14095  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-clim 15246  df-sum 15447  df-xmet 20639  df-met 20640  df-ovol 24677  df-vol 24678  df-mbf 24832  df-itg1 24833  df-itg2 24834  df-itg 24836  df-0p 24883
This theorem is referenced by:  itgsplitioo  25051  ditg0  25066  ditgneg  25070  ftc2  25257  ftc2nc  35907  areacirc  35918  itgvol0  43738
  Copyright terms: Public domain W3C validator