MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg0 Structured version   Visualization version   GIF version

Theorem itg0 25830
Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
itg0 ∫∅𝐴 d𝑥 = 0

Proof of Theorem itg0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (ℜ‘(𝐴 / (i↑𝑘))) = (ℜ‘(𝐴 / (i↑𝑘)))
21dfitg 25819 . 2 ∫∅𝐴 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))))
3 ifan 4584 . . . . . . . . . . 11 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0)
4 noel 4344 . . . . . . . . . . . 12 ¬ 𝑥 ∈ ∅
54iffalsei 4541 . . . . . . . . . . 11 if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) = 0
63, 5eqtri 2763 . . . . . . . . . 10 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = 0
76mpteq2i 5253 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0)
8 fconstmpt 5751 . . . . . . . . 9 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
97, 8eqtr4i 2766 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (ℝ × {0})
109fveq2i 6910 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0}))
11 itg20 25787 . . . . . . 7 (∫2‘(ℝ × {0})) = 0
1210, 11eqtri 2763 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = 0
1312oveq2i 7442 . . . . 5 ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0)
14 ax-icn 11212 . . . . . . 7 i ∈ ℂ
15 elfznn0 13657 . . . . . . 7 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
16 expcl 14117 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1714, 15, 16sylancr 587 . . . . . 6 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
1817mul01d 11458 . . . . 5 (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0)
1913, 18eqtrid 2787 . . . 4 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0)
2019sumeq2i 15731 . . 3 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0
21 fzfi 14010 . . . . 5 (0...3) ∈ Fin
2221olci 866 . . . 4 ((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin)
23 sumz 15755 . . . 4 (((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0)
2422, 23ax-mp 5 . . 3 Σ𝑘 ∈ (0...3)0 = 0
2520, 24eqtri 2763 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0
262, 25eqtri 2763 1 ∫∅𝐴 d𝑥 = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1537  wcel 2106  wss 3963  c0 4339  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231   × cxp 5687  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  ici 11155   · cmul 11158  cle 11294   / cdiv 11918  3c3 12320  0cn0 12524  cuz 12876  ...cfz 13544  cexp 14099  cre 15133  Σcsu 15719  2citg2 25665  citg 25667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-itg 25672  df-0p 25719
This theorem is referenced by:  itgsplitioo  25888  ditg0  25903  ditgneg  25907  ftc2  26100  ftc2nc  37689  areacirc  37700  itgvol0  45924
  Copyright terms: Public domain W3C validator