Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg0 | Structured version Visualization version GIF version |
Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
itg0 | ⊢ ∫∅𝐴 d𝑥 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (ℜ‘(𝐴 / (i↑𝑘))) = (ℜ‘(𝐴 / (i↑𝑘))) | |
2 | 1 | dfitg 25040 | . 2 ⊢ ∫∅𝐴 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) |
3 | ifan 4526 | . . . . . . . . . . 11 ⊢ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) | |
4 | noel 4277 | . . . . . . . . . . . 12 ⊢ ¬ 𝑥 ∈ ∅ | |
5 | 4 | iffalsei 4483 | . . . . . . . . . . 11 ⊢ if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) = 0 |
6 | 3, 5 | eqtri 2764 | . . . . . . . . . 10 ⊢ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = 0 |
7 | 6 | mpteq2i 5197 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0) |
8 | fconstmpt 5680 | . . . . . . . . 9 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
9 | 7, 8 | eqtr4i 2767 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (ℝ × {0}) |
10 | 9 | fveq2i 6828 | . . . . . . 7 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0})) |
11 | itg20 25008 | . . . . . . 7 ⊢ (∫2‘(ℝ × {0})) = 0 | |
12 | 10, 11 | eqtri 2764 | . . . . . 6 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = 0 |
13 | 12 | oveq2i 7348 | . . . . 5 ⊢ ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0) |
14 | ax-icn 11031 | . . . . . . 7 ⊢ i ∈ ℂ | |
15 | elfznn0 13450 | . . . . . . 7 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
16 | expcl 13901 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
17 | 14, 15, 16 | sylancr 587 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ) |
18 | 17 | mul01d 11275 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0) |
19 | 13, 18 | eqtrid 2788 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0) |
20 | 19 | sumeq2i 15510 | . . 3 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0 |
21 | fzfi 13793 | . . . . 5 ⊢ (0...3) ∈ Fin | |
22 | 21 | olci 863 | . . . 4 ⊢ ((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) |
23 | sumz 15533 | . . . 4 ⊢ (((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ Σ𝑘 ∈ (0...3)0 = 0 |
25 | 20, 24 | eqtri 2764 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0 |
26 | 2, 25 | eqtri 2764 | 1 ⊢ ∫∅𝐴 d𝑥 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ∅c0 4269 ifcif 4473 {csn 4573 class class class wbr 5092 ↦ cmpt 5175 × cxp 5618 ‘cfv 6479 (class class class)co 7337 Fincfn 8804 ℂcc 10970 ℝcr 10971 0cc0 10972 ici 10974 · cmul 10977 ≤ cle 11111 / cdiv 11733 3c3 12130 ℕ0cn0 12334 ℤ≥cuz 12683 ...cfz 13340 ↑cexp 13883 ℜcre 14907 Σcsu 15496 ∫2citg2 24886 ∫citg 24888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-disj 5058 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-ofr 7596 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-oi 9367 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-q 12790 df-rp 12832 df-xadd 12950 df-ioo 13184 df-ico 13186 df-icc 13187 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 df-xmet 20696 df-met 20697 df-ovol 24734 df-vol 24735 df-mbf 24889 df-itg1 24890 df-itg2 24891 df-itg 24893 df-0p 24940 |
This theorem is referenced by: itgsplitioo 25108 ditg0 25123 ditgneg 25127 ftc2 25314 ftc2nc 35964 areacirc 35975 itgvol0 43845 |
Copyright terms: Public domain | W3C validator |