Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg0 | Structured version Visualization version GIF version |
Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
itg0 | ⊢ ∫∅𝐴 d𝑥 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (ℜ‘(𝐴 / (i↑𝑘))) = (ℜ‘(𝐴 / (i↑𝑘))) | |
2 | 1 | dfitg 24983 | . 2 ⊢ ∫∅𝐴 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) |
3 | ifan 4518 | . . . . . . . . . . 11 ⊢ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) | |
4 | noel 4270 | . . . . . . . . . . . 12 ⊢ ¬ 𝑥 ∈ ∅ | |
5 | 4 | iffalsei 4475 | . . . . . . . . . . 11 ⊢ if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) = 0 |
6 | 3, 5 | eqtri 2764 | . . . . . . . . . 10 ⊢ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = 0 |
7 | 6 | mpteq2i 5186 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0) |
8 | fconstmpt 5660 | . . . . . . . . 9 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
9 | 7, 8 | eqtr4i 2767 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (ℝ × {0}) |
10 | 9 | fveq2i 6807 | . . . . . . 7 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0})) |
11 | itg20 24951 | . . . . . . 7 ⊢ (∫2‘(ℝ × {0})) = 0 | |
12 | 10, 11 | eqtri 2764 | . . . . . 6 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = 0 |
13 | 12 | oveq2i 7318 | . . . . 5 ⊢ ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0) |
14 | ax-icn 10980 | . . . . . . 7 ⊢ i ∈ ℂ | |
15 | elfznn0 13399 | . . . . . . 7 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
16 | expcl 13850 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
17 | 14, 15, 16 | sylancr 588 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ) |
18 | 17 | mul01d 11224 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0) |
19 | 13, 18 | eqtrid 2788 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0) |
20 | 19 | sumeq2i 15460 | . . 3 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0 |
21 | fzfi 13742 | . . . . 5 ⊢ (0...3) ∈ Fin | |
22 | 21 | olci 864 | . . . 4 ⊢ ((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) |
23 | sumz 15483 | . . . 4 ⊢ (((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0) | |
24 | 22, 23 | ax-mp 5 | . . 3 ⊢ Σ𝑘 ∈ (0...3)0 = 0 |
25 | 20, 24 | eqtri 2764 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0 |
26 | 2, 25 | eqtri 2764 | 1 ⊢ ∫∅𝐴 d𝑥 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 ∅c0 4262 ifcif 4465 {csn 4565 class class class wbr 5081 ↦ cmpt 5164 × cxp 5598 ‘cfv 6458 (class class class)co 7307 Fincfn 8764 ℂcc 10919 ℝcr 10920 0cc0 10921 ici 10923 · cmul 10926 ≤ cle 11060 / cdiv 11682 3c3 12079 ℕ0cn0 12283 ℤ≥cuz 12632 ...cfz 13289 ↑cexp 13832 ℜcre 14857 Σcsu 15446 ∫2citg2 24829 ∫citg 24831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-disj 5047 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-ofr 7566 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-oi 9317 df-dju 9707 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-q 12739 df-rp 12781 df-xadd 12899 df-ioo 13133 df-ico 13135 df-icc 13136 df-fz 13290 df-fzo 13433 df-fl 13562 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-sum 15447 df-xmet 20639 df-met 20640 df-ovol 24677 df-vol 24678 df-mbf 24832 df-itg1 24833 df-itg2 24834 df-itg 24836 df-0p 24883 |
This theorem is referenced by: itgsplitioo 25051 ditg0 25066 ditgneg 25070 ftc2 25257 ftc2nc 35907 areacirc 35918 itgvol0 43738 |
Copyright terms: Public domain | W3C validator |