| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg0 | Structured version Visualization version GIF version | ||
| Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg0 | ⊢ ∫∅𝐴 d𝑥 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (ℜ‘(𝐴 / (i↑𝑘))) = (ℜ‘(𝐴 / (i↑𝑘))) | |
| 2 | 1 | dfitg 25703 | . 2 ⊢ ∫∅𝐴 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) |
| 3 | ifan 4528 | . . . . . . . . . . 11 ⊢ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) | |
| 4 | noel 4287 | . . . . . . . . . . . 12 ⊢ ¬ 𝑥 ∈ ∅ | |
| 5 | 4 | iffalsei 4484 | . . . . . . . . . . 11 ⊢ if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) = 0 |
| 6 | 3, 5 | eqtri 2754 | . . . . . . . . . 10 ⊢ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = 0 |
| 7 | 6 | mpteq2i 5189 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0) |
| 8 | fconstmpt 5681 | . . . . . . . . 9 ⊢ (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0) | |
| 9 | 7, 8 | eqtr4i 2757 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (ℝ × {0}) |
| 10 | 9 | fveq2i 6831 | . . . . . . 7 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0})) |
| 11 | itg20 25671 | . . . . . . 7 ⊢ (∫2‘(ℝ × {0})) = 0 | |
| 12 | 10, 11 | eqtri 2754 | . . . . . 6 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = 0 |
| 13 | 12 | oveq2i 7363 | . . . . 5 ⊢ ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0) |
| 14 | ax-icn 11071 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 15 | elfznn0 13526 | . . . . . . 7 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
| 16 | expcl 13992 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
| 17 | 14, 15, 16 | sylancr 587 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ) |
| 18 | 17 | mul01d 11318 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0) |
| 19 | 13, 18 | eqtrid 2778 | . . . 4 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0) |
| 20 | 19 | sumeq2i 15611 | . . 3 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0 |
| 21 | fzfi 13885 | . . . . 5 ⊢ (0...3) ∈ Fin | |
| 22 | 21 | olci 866 | . . . 4 ⊢ ((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) |
| 23 | sumz 15635 | . . . 4 ⊢ (((0...3) ⊆ (ℤ≥‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0) | |
| 24 | 22, 23 | ax-mp 5 | . . 3 ⊢ Σ𝑘 ∈ (0...3)0 = 0 |
| 25 | 20, 24 | eqtri 2754 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0 |
| 26 | 2, 25 | eqtri 2754 | 1 ⊢ ∫∅𝐴 d𝑥 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4282 ifcif 4474 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 × cxp 5617 ‘cfv 6487 (class class class)co 7352 Fincfn 8875 ℂcc 11010 ℝcr 11011 0cc0 11012 ici 11014 · cmul 11017 ≤ cle 11153 / cdiv 11780 3c3 12187 ℕ0cn0 12387 ℤ≥cuz 12738 ...cfz 13413 ↑cexp 13974 ℜcre 15010 Σcsu 15599 ∫2citg2 25550 ∫citg 25552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-q 12853 df-rp 12897 df-xadd 13018 df-ioo 13255 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-fl 13702 df-seq 13915 df-exp 13975 df-hash 14244 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-sum 15600 df-xmet 21290 df-met 21291 df-ovol 25398 df-vol 25399 df-mbf 25553 df-itg1 25554 df-itg2 25555 df-itg 25557 df-0p 25604 |
| This theorem is referenced by: itgsplitioo 25772 ditg0 25787 ditgneg 25791 ftc2 25984 ftc2nc 37748 areacirc 37759 itgvol0 46071 |
| Copyright terms: Public domain | W3C validator |