MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg0 Structured version   Visualization version   GIF version

Theorem itg0 25697
Description: The integral of anything on the empty set is zero. (Contributed by Mario Carneiro, 13-Aug-2014.)
Assertion
Ref Expression
itg0 ∫∅𝐴 d𝑥 = 0

Proof of Theorem itg0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (ℜ‘(𝐴 / (i↑𝑘))) = (ℜ‘(𝐴 / (i↑𝑘)))
21dfitg 25686 . 2 ∫∅𝐴 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))))
3 ifan 4532 . . . . . . . . . . 11 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0)
4 noel 4291 . . . . . . . . . . . 12 ¬ 𝑥 ∈ ∅
54iffalsei 4488 . . . . . . . . . . 11 if(𝑥 ∈ ∅, if(0 ≤ (ℜ‘(𝐴 / (i↑𝑘))), (ℜ‘(𝐴 / (i↑𝑘))), 0), 0) = 0
63, 5eqtri 2752 . . . . . . . . . 10 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0) = 0
76mpteq2i 5191 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ 0)
8 fconstmpt 5685 . . . . . . . . 9 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
97, 8eqtr4i 2755 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)) = (ℝ × {0})
109fveq2i 6829 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = (∫2‘(ℝ × {0}))
11 itg20 25654 . . . . . . 7 (∫2‘(ℝ × {0})) = 0
1210, 11eqtri 2752 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0))) = 0
1312oveq2i 7364 . . . . 5 ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = ((i↑𝑘) · 0)
14 ax-icn 11087 . . . . . . 7 i ∈ ℂ
15 elfznn0 13541 . . . . . . 7 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
16 expcl 14004 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1714, 15, 16sylancr 587 . . . . . 6 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
1817mul01d 11333 . . . . 5 (𝑘 ∈ (0...3) → ((i↑𝑘) · 0) = 0)
1913, 18eqtrid 2776 . . . 4 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0)
2019sumeq2i 15623 . . 3 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)0
21 fzfi 13897 . . . . 5 (0...3) ∈ Fin
2221olci 866 . . . 4 ((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin)
23 sumz 15647 . . . 4 (((0...3) ⊆ (ℤ‘0) ∨ (0...3) ∈ Fin) → Σ𝑘 ∈ (0...3)0 = 0)
2422, 23ax-mp 5 . . 3 Σ𝑘 ∈ (0...3)0 = 0
2520, 24eqtri 2752 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(𝐴 / (i↑𝑘)))), (ℜ‘(𝐴 / (i↑𝑘))), 0)))) = 0
262, 25eqtri 2752 1 ∫∅𝐴 d𝑥 = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3905  c0 4286  ifcif 4478  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  ici 11030   · cmul 11033  cle 11169   / cdiv 11795  3c3 12202  0cn0 12402  cuz 12753  ...cfz 13428  cexp 13986  cre 15022  Σcsu 15611  2citg2 25533  citg 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xadd 13033  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-xmet 21272  df-met 21273  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-itg 25540  df-0p 25587
This theorem is referenced by:  itgsplitioo  25755  ditg0  25770  ditgneg  25774  ftc2  25967  ftc2nc  37681  areacirc  37692  itgvol0  45950
  Copyright terms: Public domain W3C validator