MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum0 Structured version   Visualization version   GIF version

Theorem sum0 15646
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sum0 Σ𝑘 ∈ ∅ 𝐴 = 0

Proof of Theorem sum0
StepHypRef Expression
1 nnuz 12796 . . . 4 ℕ = (ℤ‘1)
2 1z 12523 . . . . 5 1 ∈ ℤ
32a1i 11 . . . 4 (⊤ → 1 ∈ ℤ)
4 0ss 4353 . . . . 5 ∅ ⊆ ℕ
54a1i 11 . . . 4 (⊤ → ∅ ⊆ ℕ)
6 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
76, 1eleqtrdi 2838 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8 c0ex 11128 . . . . . . 7 0 ∈ V
98fvconst2 7144 . . . . . 6 (𝑘 ∈ (ℤ‘1) → (((ℤ‘1) × {0})‘𝑘) = 0)
107, 9syl 17 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ‘1) × {0})‘𝑘) = 0)
11 noel 4291 . . . . . 6 ¬ 𝑘 ∈ ∅
1211iffalsei 4488 . . . . 5 if(𝑘 ∈ ∅, 𝐴, 0) = 0
1310, 12eqtr4di 2782 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0))
1411pm2.21i 119 . . . . 5 (𝑘 ∈ ∅ → 𝐴 ∈ ℂ)
1514adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ)
161, 3, 5, 13, 15zsum 15643 . . 3 (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))))
1716mptru 1547 . 2 Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ‘1) × {0})))
18 fclim 15478 . . . 4 ⇝ :dom ⇝ ⟶ℂ
19 ffun 6659 . . . 4 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
2018, 19ax-mp 5 . . 3 Fun ⇝
21 serclim0 15502 . . . 4 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
222, 21ax-mp 5 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
23 funbrfv 6875 . . 3 (Fun ⇝ → (seq1( + , ((ℤ‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))) = 0))
2420, 22, 23mp2 9 . 2 ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))) = 0
2517, 24eqtri 2752 1 Σ𝑘 ∈ ∅ 𝐴 = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wss 3905  c0 4286  ifcif 4478  {csn 4579   class class class wbr 5095   × cxp 5621  dom cdm 5623  Fun wfun 6480  wf 6482  cfv 6486  cc 11026  0cc0 11028  1c1 11029   + caddc 11031  cn 12146  cz 12489  cuz 12753  seqcseq 13926  cli 15409  Σcsu 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612
This theorem is referenced by:  sumz  15647  fsumf1o  15648  fsumcllem  15657  fsumadd  15665  fsum2d  15696  fsumrev2  15707  fsummulc2  15709  fsumconst  15715  modfsummod  15719  fsumabs  15726  telfsumo  15727  fsumparts  15731  fsumrelem  15732  fsumrlim  15736  fsumo1  15737  fsumiun  15746  isumsplit  15765  arisum  15785  arisum2  15786  pwdif  15793  bpoly0  15975  sumeven  16316  sumodd  16317  bitsinv1  16371  bitsinvp1  16378  prmreclem4  16849  prmreclem5  16850  gsumfsum  21359  fsumcn  24777  ovolfiniun  25418  volfiniun  25464  itg10  25605  itgfsum  25744  dvmptfsum  25895  abelthlem6  26362  logfac  26526  log2ublem3  26874  harmonicbnd3  26934  cht1  27091  dchrisumlem1  27416  dchrisumlem3  27418  logdivbnd  27483  pntrsumbnd2  27494  pntrlog2bndlem4  27507  finsumvtxdg2size  29514  esumpcvgval  34044  signsvf0  34547  signsvf1  34548  repr0  34578  breprexplemc  34599  tgoldbachgtda  34628  mettrifi  37736  rrncmslem  37811  deg1gprod  42113  sumcubes  42286  mccl  45580  dvmptfprod  45927  dvnprodlem3  45930  sge0rnn0  46350  sge00  46358  sge0sn  46361
  Copyright terms: Public domain W3C validator