| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12777 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1z 12508 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
| 4 | 0ss 4349 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 7 | 6, 1 | eleqtrdi 2843 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 8 | c0ex 11113 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | 8 | fvconst2 7144 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 11 | noel 4287 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 12 | 11 | iffalsei 4484 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 13 | 10, 12 | eqtr4di 2786 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 16 | 1, 3, 5, 13, 15 | zsum 15627 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 17 | 16 | mptru 1548 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 18 | fclim 15462 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 19 | ffun 6659 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 21 | serclim0 15486 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 23 | funbrfv 6876 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 25 | 17, 24 | eqtri 2756 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 ifcif 4474 {csn 4575 class class class wbr 5093 × cxp 5617 dom cdm 5619 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 ℂcc 11011 0cc0 11013 1c1 11014 + caddc 11016 ℕcn 12132 ℤcz 12475 ℤ≥cuz 12738 seqcseq 13910 ⇝ cli 15393 Σcsu 15595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 |
| This theorem is referenced by: sumz 15631 fsumf1o 15632 fsumcllem 15641 fsumadd 15649 fsum2d 15680 fsumrev2 15691 fsummulc2 15693 fsumconst 15699 modfsummod 15703 fsumabs 15710 telfsumo 15711 fsumparts 15715 fsumrelem 15716 fsumrlim 15720 fsumo1 15721 fsumiun 15730 isumsplit 15749 arisum 15769 arisum2 15770 pwdif 15777 bpoly0 15959 sumeven 16300 sumodd 16301 bitsinv1 16355 bitsinvp1 16362 prmreclem4 16833 prmreclem5 16834 gsumfsum 21373 fsumcn 24789 ovolfiniun 25430 volfiniun 25476 itg10 25617 itgfsum 25756 dvmptfsum 25907 abelthlem6 26374 logfac 26538 log2ublem3 26886 harmonicbnd3 26946 cht1 27103 dchrisumlem1 27428 dchrisumlem3 27430 logdivbnd 27495 pntrsumbnd2 27506 pntrlog2bndlem4 27519 finsumvtxdg2size 29531 esumpcvgval 34112 signsvf0 34614 signsvf1 34615 repr0 34645 breprexplemc 34666 tgoldbachgtda 34695 mettrifi 37818 rrncmslem 37893 deg1gprod 42254 sumcubes 42432 mccl 45723 dvmptfprod 46068 dvnprodlem3 46071 sge0rnn0 46491 sge00 46499 sge0sn 46502 |
| Copyright terms: Public domain | W3C validator |