![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version |
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12029 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1z 11759 | . . . . 5 ⊢ 1 ∈ ℤ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
4 | 0ss 4198 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
6 | simpr 479 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
7 | 6, 1 | syl6eleq 2869 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
8 | c0ex 10370 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | 8 | fvconst2 6741 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
11 | noel 4146 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
12 | 11 | iffalsei 4317 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
13 | 10, 12 | syl6eqr 2832 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
14 | 11 | pm2.21i 117 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
15 | 14 | adantl 475 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
16 | 1, 3, 5, 13, 15 | zsum 14856 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
17 | 16 | mptru 1609 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
18 | fclim 14692 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
19 | ffun 6294 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
21 | serclim0 14716 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
23 | funbrfv 6493 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
25 | 17, 24 | eqtri 2802 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1601 ⊤wtru 1602 ∈ wcel 2107 ⊆ wss 3792 ∅c0 4141 ifcif 4307 {csn 4398 class class class wbr 4886 × cxp 5353 dom cdm 5355 Fun wfun 6129 ⟶wf 6131 ‘cfv 6135 ℂcc 10270 0cc0 10272 1c1 10273 + caddc 10275 ℕcn 11374 ℤcz 11728 ℤ≥cuz 11992 seqcseq 13119 ⇝ cli 14623 Σcsu 14824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 |
This theorem is referenced by: sumz 14860 fsumf1o 14861 fsumcllem 14870 fsumadd 14877 fsum2d 14907 fsumrev2 14918 fsummulc2 14920 fsumconst 14926 modfsummod 14930 fsumabs 14937 telfsumo 14938 fsumparts 14942 fsumrelem 14943 fsumrlim 14947 fsumo1 14948 fsumiun 14957 isumsplit 14976 arisum 14996 arisum2 14997 bpoly0 15183 sumeven 15517 sumodd 15518 bitsinv1 15570 bitsinvp1 15577 prmreclem4 16027 prmreclem5 16028 gsumfsum 20209 fsumcn 23081 ovolfiniun 23705 volfiniun 23751 itg10 23892 itgfsum 24030 dvmptfsum 24175 abelthlem6 24627 logfac 24784 log2ublem3 25127 harmonicbnd3 25186 cht1 25343 dchrisumlem1 25630 dchrisumlem3 25632 logdivbnd 25697 pntrsumbnd2 25708 pntrlog2bndlem4 25721 finsumvtxdg2size 26898 esumpcvgval 30738 signsvf0 31259 signsvf1 31260 repr0 31291 breprexplemc 31312 tgoldbachgtda 31341 mettrifi 34177 rrncmslem 34255 mccl 40738 dvmptfprod 41088 dvnprodlem3 41091 sge0rnn0 41509 sge00 41517 sge0sn 41520 pwdif 42522 |
Copyright terms: Public domain | W3C validator |