| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12836 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1z 12563 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
| 4 | 0ss 4363 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 7 | 6, 1 | eleqtrdi 2838 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 8 | c0ex 11168 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | 8 | fvconst2 7178 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 11 | noel 4301 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 12 | 11 | iffalsei 4498 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 13 | 10, 12 | eqtr4di 2782 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 16 | 1, 3, 5, 13, 15 | zsum 15684 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 17 | 16 | mptru 1547 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 18 | fclim 15519 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 19 | ffun 6691 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 21 | serclim0 15543 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 23 | funbrfv 6909 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 25 | 17, 24 | eqtri 2752 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 ifcif 4488 {csn 4589 class class class wbr 5107 × cxp 5636 dom cdm 5638 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 seqcseq 13966 ⇝ cli 15450 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: sumz 15688 fsumf1o 15689 fsumcllem 15698 fsumadd 15706 fsum2d 15737 fsumrev2 15748 fsummulc2 15750 fsumconst 15756 modfsummod 15760 fsumabs 15767 telfsumo 15768 fsumparts 15772 fsumrelem 15773 fsumrlim 15777 fsumo1 15778 fsumiun 15787 isumsplit 15806 arisum 15826 arisum2 15827 pwdif 15834 bpoly0 16016 sumeven 16357 sumodd 16358 bitsinv1 16412 bitsinvp1 16419 prmreclem4 16890 prmreclem5 16891 gsumfsum 21351 fsumcn 24761 ovolfiniun 25402 volfiniun 25448 itg10 25589 itgfsum 25728 dvmptfsum 25879 abelthlem6 26346 logfac 26510 log2ublem3 26858 harmonicbnd3 26918 cht1 27075 dchrisumlem1 27400 dchrisumlem3 27402 logdivbnd 27467 pntrsumbnd2 27478 pntrlog2bndlem4 27491 finsumvtxdg2size 29478 esumpcvgval 34068 signsvf0 34571 signsvf1 34572 repr0 34602 breprexplemc 34623 tgoldbachgtda 34652 mettrifi 37751 rrncmslem 37826 deg1gprod 42128 sumcubes 42301 mccl 45596 dvmptfprod 45943 dvnprodlem3 45946 sge0rnn0 46366 sge00 46374 sge0sn 46377 |
| Copyright terms: Public domain | W3C validator |