![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version |
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sum0 | β’ Ξ£π β β π΄ = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12861 | . . . 4 β’ β = (β€β₯β1) | |
2 | 1z 12588 | . . . . 5 β’ 1 β β€ | |
3 | 2 | a1i 11 | . . . 4 β’ (β€ β 1 β β€) |
4 | 0ss 4395 | . . . . 5 β’ β β β | |
5 | 4 | a1i 11 | . . . 4 β’ (β€ β β β β) |
6 | simpr 485 | . . . . . . 7 β’ ((β€ β§ π β β) β π β β) | |
7 | 6, 1 | eleqtrdi 2843 | . . . . . 6 β’ ((β€ β§ π β β) β π β (β€β₯β1)) |
8 | c0ex 11204 | . . . . . . 7 β’ 0 β V | |
9 | 8 | fvconst2 7201 | . . . . . 6 β’ (π β (β€β₯β1) β (((β€β₯β1) Γ {0})βπ) = 0) |
10 | 7, 9 | syl 17 | . . . . 5 β’ ((β€ β§ π β β) β (((β€β₯β1) Γ {0})βπ) = 0) |
11 | noel 4329 | . . . . . 6 β’ Β¬ π β β | |
12 | 11 | iffalsei 4537 | . . . . 5 β’ if(π β β , π΄, 0) = 0 |
13 | 10, 12 | eqtr4di 2790 | . . . 4 β’ ((β€ β§ π β β) β (((β€β₯β1) Γ {0})βπ) = if(π β β , π΄, 0)) |
14 | 11 | pm2.21i 119 | . . . . 5 β’ (π β β β π΄ β β) |
15 | 14 | adantl 482 | . . . 4 β’ ((β€ β§ π β β ) β π΄ β β) |
16 | 1, 3, 5, 13, 15 | zsum 15660 | . . 3 β’ (β€ β Ξ£π β β π΄ = ( β βseq1( + , ((β€β₯β1) Γ {0})))) |
17 | 16 | mptru 1548 | . 2 β’ Ξ£π β β π΄ = ( β βseq1( + , ((β€β₯β1) Γ {0}))) |
18 | fclim 15493 | . . . 4 β’ β :dom β βΆβ | |
19 | ffun 6717 | . . . 4 β’ ( β :dom β βΆβ β Fun β ) | |
20 | 18, 19 | ax-mp 5 | . . 3 β’ Fun β |
21 | serclim0 15517 | . . . 4 β’ (1 β β€ β seq1( + , ((β€β₯β1) Γ {0})) β 0) | |
22 | 2, 21 | ax-mp 5 | . . 3 β’ seq1( + , ((β€β₯β1) Γ {0})) β 0 |
23 | funbrfv 6939 | . . 3 β’ (Fun β β (seq1( + , ((β€β₯β1) Γ {0})) β 0 β ( β βseq1( + , ((β€β₯β1) Γ {0}))) = 0)) | |
24 | 20, 22, 23 | mp2 9 | . 2 β’ ( β βseq1( + , ((β€β₯β1) Γ {0}))) = 0 |
25 | 17, 24 | eqtri 2760 | 1 β’ Ξ£π β β π΄ = 0 |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β€wtru 1542 β wcel 2106 β wss 3947 β c0 4321 ifcif 4527 {csn 4627 class class class wbr 5147 Γ cxp 5673 dom cdm 5675 Fun wfun 6534 βΆwf 6536 βcfv 6540 βcc 11104 0cc0 11106 1c1 11107 + caddc 11109 βcn 12208 β€cz 12554 β€β₯cuz 12818 seqcseq 13962 β cli 15424 Ξ£csu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 |
This theorem is referenced by: sumz 15664 fsumf1o 15665 fsumcllem 15674 fsumadd 15682 fsum2d 15713 fsumrev2 15724 fsummulc2 15726 fsumconst 15732 modfsummod 15736 fsumabs 15743 telfsumo 15744 fsumparts 15748 fsumrelem 15749 fsumrlim 15753 fsumo1 15754 fsumiun 15763 isumsplit 15782 arisum 15802 arisum2 15803 pwdif 15810 bpoly0 15990 sumeven 16326 sumodd 16327 bitsinv1 16379 bitsinvp1 16386 prmreclem4 16848 prmreclem5 16849 gsumfsum 21004 fsumcn 24377 ovolfiniun 25009 volfiniun 25055 itg10 25196 itgfsum 25335 dvmptfsum 25483 abelthlem6 25939 logfac 26100 log2ublem3 26442 harmonicbnd3 26501 cht1 26658 dchrisumlem1 26981 dchrisumlem3 26983 logdivbnd 27048 pntrsumbnd2 27059 pntrlog2bndlem4 27072 finsumvtxdg2size 28796 esumpcvgval 33064 signsvf0 33579 signsvf1 33580 repr0 33611 breprexplemc 33632 tgoldbachgtda 33661 mettrifi 36613 rrncmslem 36688 sumcubes 41206 mccl 44300 dvmptfprod 44647 dvnprodlem3 44650 sge0rnn0 45070 sge00 45078 sge0sn 45081 |
Copyright terms: Public domain | W3C validator |