Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version |
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12550 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1z 12280 | . . . . 5 ⊢ 1 ∈ ℤ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
4 | 0ss 4327 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
7 | 6, 1 | eleqtrdi 2849 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
8 | c0ex 10900 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | 8 | fvconst2 7061 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
11 | noel 4261 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
12 | 11 | iffalsei 4466 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
13 | 10, 12 | eqtr4di 2797 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
16 | 1, 3, 5, 13, 15 | zsum 15358 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
17 | 16 | mptru 1546 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
18 | fclim 15190 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
19 | ffun 6587 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
21 | serclim0 15214 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
23 | funbrfv 6802 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
25 | 17, 24 | eqtri 2766 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 ifcif 4456 {csn 4558 class class class wbr 5070 × cxp 5578 dom cdm 5580 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 ℕcn 11903 ℤcz 12249 ℤ≥cuz 12511 seqcseq 13649 ⇝ cli 15121 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: sumz 15362 fsumf1o 15363 fsumcllem 15372 fsumadd 15380 fsum2d 15411 fsumrev2 15422 fsummulc2 15424 fsumconst 15430 modfsummod 15434 fsumabs 15441 telfsumo 15442 fsumparts 15446 fsumrelem 15447 fsumrlim 15451 fsumo1 15452 fsumiun 15461 isumsplit 15480 arisum 15500 arisum2 15501 pwdif 15508 bpoly0 15688 sumeven 16024 sumodd 16025 bitsinv1 16077 bitsinvp1 16084 prmreclem4 16548 prmreclem5 16549 gsumfsum 20577 fsumcn 23939 ovolfiniun 24570 volfiniun 24616 itg10 24757 itgfsum 24896 dvmptfsum 25044 abelthlem6 25500 logfac 25661 log2ublem3 26003 harmonicbnd3 26062 cht1 26219 dchrisumlem1 26542 dchrisumlem3 26544 logdivbnd 26609 pntrsumbnd2 26620 pntrlog2bndlem4 26633 finsumvtxdg2size 27820 esumpcvgval 31946 signsvf0 32459 signsvf1 32460 repr0 32491 breprexplemc 32512 tgoldbachgtda 32541 mettrifi 35842 rrncmslem 35917 mccl 43029 dvmptfprod 43376 dvnprodlem3 43379 sge0rnn0 43796 sge00 43804 sge0sn 43807 |
Copyright terms: Public domain | W3C validator |