| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12775 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1z 12502 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
| 4 | 0ss 4350 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 7 | 6, 1 | eleqtrdi 2841 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 8 | c0ex 11106 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | 8 | fvconst2 7138 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 11 | noel 4288 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 12 | 11 | iffalsei 4485 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 13 | 10, 12 | eqtr4di 2784 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 16 | 1, 3, 5, 13, 15 | zsum 15625 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 17 | 16 | mptru 1548 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 18 | fclim 15460 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 19 | ffun 6654 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 21 | serclim0 15484 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 23 | funbrfv 6870 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 25 | 17, 24 | eqtri 2754 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ⊆ wss 3902 ∅c0 4283 ifcif 4475 {csn 4576 class class class wbr 5091 × cxp 5614 dom cdm 5616 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 ℕcn 12125 ℤcz 12468 ℤ≥cuz 12732 seqcseq 13908 ⇝ cli 15391 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: sumz 15629 fsumf1o 15630 fsumcllem 15639 fsumadd 15647 fsum2d 15678 fsumrev2 15689 fsummulc2 15691 fsumconst 15697 modfsummod 15701 fsumabs 15708 telfsumo 15709 fsumparts 15713 fsumrelem 15714 fsumrlim 15718 fsumo1 15719 fsumiun 15728 isumsplit 15747 arisum 15767 arisum2 15768 pwdif 15775 bpoly0 15957 sumeven 16298 sumodd 16299 bitsinv1 16353 bitsinvp1 16360 prmreclem4 16831 prmreclem5 16832 gsumfsum 21372 fsumcn 24789 ovolfiniun 25430 volfiniun 25476 itg10 25617 itgfsum 25756 dvmptfsum 25907 abelthlem6 26374 logfac 26538 log2ublem3 26886 harmonicbnd3 26946 cht1 27103 dchrisumlem1 27428 dchrisumlem3 27430 logdivbnd 27495 pntrsumbnd2 27506 pntrlog2bndlem4 27519 finsumvtxdg2size 29530 esumpcvgval 34089 signsvf0 34591 signsvf1 34592 repr0 34622 breprexplemc 34643 tgoldbachgtda 34672 mettrifi 37803 rrncmslem 37878 deg1gprod 42179 sumcubes 42352 mccl 45644 dvmptfprod 45989 dvnprodlem3 45992 sge0rnn0 46412 sge00 46420 sge0sn 46423 |
| Copyright terms: Public domain | W3C validator |