![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version |
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12919 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1z 12645 | . . . . 5 ⊢ 1 ∈ ℤ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
4 | 0ss 4406 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
7 | 6, 1 | eleqtrdi 2849 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
8 | c0ex 11253 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | 8 | fvconst2 7224 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
11 | noel 4344 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
12 | 11 | iffalsei 4541 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
13 | 10, 12 | eqtr4di 2793 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
16 | 1, 3, 5, 13, 15 | zsum 15751 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
17 | 16 | mptru 1544 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
18 | fclim 15586 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
19 | ffun 6740 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
21 | serclim0 15610 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
23 | funbrfv 6958 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
25 | 17, 24 | eqtri 2763 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2106 ⊆ wss 3963 ∅c0 4339 ifcif 4531 {csn 4631 class class class wbr 5148 × cxp 5687 dom cdm 5689 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 ℕcn 12264 ℤcz 12611 ℤ≥cuz 12876 seqcseq 14039 ⇝ cli 15517 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 |
This theorem is referenced by: sumz 15755 fsumf1o 15756 fsumcllem 15765 fsumadd 15773 fsum2d 15804 fsumrev2 15815 fsummulc2 15817 fsumconst 15823 modfsummod 15827 fsumabs 15834 telfsumo 15835 fsumparts 15839 fsumrelem 15840 fsumrlim 15844 fsumo1 15845 fsumiun 15854 isumsplit 15873 arisum 15893 arisum2 15894 pwdif 15901 bpoly0 16083 sumeven 16421 sumodd 16422 bitsinv1 16476 bitsinvp1 16483 prmreclem4 16953 prmreclem5 16954 gsumfsum 21470 fsumcn 24908 ovolfiniun 25550 volfiniun 25596 itg10 25737 itgfsum 25877 dvmptfsum 26028 abelthlem6 26495 logfac 26658 log2ublem3 27006 harmonicbnd3 27066 cht1 27223 dchrisumlem1 27548 dchrisumlem3 27550 logdivbnd 27615 pntrsumbnd2 27626 pntrlog2bndlem4 27639 finsumvtxdg2size 29583 esumpcvgval 34059 signsvf0 34574 signsvf1 34575 repr0 34605 breprexplemc 34626 tgoldbachgtda 34655 mettrifi 37744 rrncmslem 37819 deg1gprod 42122 sumcubes 42326 mccl 45554 dvmptfprod 45901 dvnprodlem3 45904 sge0rnn0 46324 sge00 46332 sge0sn 46335 |
Copyright terms: Public domain | W3C validator |