Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version |
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12603 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1z 12333 | . . . . 5 ⊢ 1 ∈ ℤ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
4 | 0ss 4335 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
7 | 6, 1 | eleqtrdi 2850 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
8 | c0ex 10953 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | 8 | fvconst2 7073 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
11 | noel 4269 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
12 | 11 | iffalsei 4474 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
13 | 10, 12 | eqtr4di 2797 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
16 | 1, 3, 5, 13, 15 | zsum 15411 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
17 | 16 | mptru 1548 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
18 | fclim 15243 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
19 | ffun 6599 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
21 | serclim0 15267 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
23 | funbrfv 6814 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
25 | 17, 24 | eqtri 2767 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2109 ⊆ wss 3891 ∅c0 4261 ifcif 4464 {csn 4566 class class class wbr 5078 × cxp 5586 dom cdm 5588 Fun wfun 6424 ⟶wf 6426 ‘cfv 6430 ℂcc 10853 0cc0 10855 1c1 10856 + caddc 10858 ℕcn 11956 ℤcz 12302 ℤ≥cuz 12564 seqcseq 13702 ⇝ cli 15174 Σcsu 15378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 |
This theorem is referenced by: sumz 15415 fsumf1o 15416 fsumcllem 15425 fsumadd 15433 fsum2d 15464 fsumrev2 15475 fsummulc2 15477 fsumconst 15483 modfsummod 15487 fsumabs 15494 telfsumo 15495 fsumparts 15499 fsumrelem 15500 fsumrlim 15504 fsumo1 15505 fsumiun 15514 isumsplit 15533 arisum 15553 arisum2 15554 pwdif 15561 bpoly0 15741 sumeven 16077 sumodd 16078 bitsinv1 16130 bitsinvp1 16137 prmreclem4 16601 prmreclem5 16602 gsumfsum 20646 fsumcn 24014 ovolfiniun 24646 volfiniun 24692 itg10 24833 itgfsum 24972 dvmptfsum 25120 abelthlem6 25576 logfac 25737 log2ublem3 26079 harmonicbnd3 26138 cht1 26295 dchrisumlem1 26618 dchrisumlem3 26620 logdivbnd 26685 pntrsumbnd2 26696 pntrlog2bndlem4 26709 finsumvtxdg2size 27898 esumpcvgval 32025 signsvf0 32538 signsvf1 32539 repr0 32570 breprexplemc 32591 tgoldbachgtda 32620 mettrifi 35894 rrncmslem 35969 mccl 43093 dvmptfprod 43440 dvnprodlem3 43443 sge0rnn0 43860 sge00 43868 sge0sn 43871 |
Copyright terms: Public domain | W3C validator |