MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sum0 Structured version   Visualization version   GIF version

Theorem sum0 15070
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sum0 Σ𝑘 ∈ ∅ 𝐴 = 0

Proof of Theorem sum0
StepHypRef Expression
1 nnuz 12269 . . . 4 ℕ = (ℤ‘1)
2 1z 12000 . . . . 5 1 ∈ ℤ
32a1i 11 . . . 4 (⊤ → 1 ∈ ℤ)
4 0ss 4304 . . . . 5 ∅ ⊆ ℕ
54a1i 11 . . . 4 (⊤ → ∅ ⊆ ℕ)
6 simpr 488 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
76, 1eleqtrdi 2900 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8 c0ex 10624 . . . . . . 7 0 ∈ V
98fvconst2 6943 . . . . . 6 (𝑘 ∈ (ℤ‘1) → (((ℤ‘1) × {0})‘𝑘) = 0)
107, 9syl 17 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ‘1) × {0})‘𝑘) = 0)
11 noel 4247 . . . . . 6 ¬ 𝑘 ∈ ∅
1211iffalsei 4435 . . . . 5 if(𝑘 ∈ ∅, 𝐴, 0) = 0
1310, 12eqtr4di 2851 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0))
1411pm2.21i 119 . . . . 5 (𝑘 ∈ ∅ → 𝐴 ∈ ℂ)
1514adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ)
161, 3, 5, 13, 15zsum 15067 . . 3 (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))))
1716mptru 1545 . 2 Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ‘1) × {0})))
18 fclim 14902 . . . 4 ⇝ :dom ⇝ ⟶ℂ
19 ffun 6490 . . . 4 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
2018, 19ax-mp 5 . . 3 Fun ⇝
21 serclim0 14926 . . . 4 (1 ∈ ℤ → seq1( + , ((ℤ‘1) × {0})) ⇝ 0)
222, 21ax-mp 5 . . 3 seq1( + , ((ℤ‘1) × {0})) ⇝ 0
23 funbrfv 6691 . . 3 (Fun ⇝ → (seq1( + , ((ℤ‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))) = 0))
2420, 22, 23mp2 9 . 2 ( ⇝ ‘seq1( + , ((ℤ‘1) × {0}))) = 0
2517, 24eqtri 2821 1 Σ𝑘 ∈ ∅ 𝐴 = 0
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wtru 1539  wcel 2111  wss 3881  c0 4243  ifcif 4425  {csn 4525   class class class wbr 5030   × cxp 5517  dom cdm 5519  Fun wfun 6318  wf 6320  cfv 6324  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cn 11625  cz 11969  cuz 12231  seqcseq 13364  cli 14833  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  sumz  15071  fsumf1o  15072  fsumcllem  15081  fsumadd  15088  fsum2d  15118  fsumrev2  15129  fsummulc2  15131  fsumconst  15137  modfsummod  15141  fsumabs  15148  telfsumo  15149  fsumparts  15153  fsumrelem  15154  fsumrlim  15158  fsumo1  15159  fsumiun  15168  isumsplit  15187  arisum  15207  arisum2  15208  pwdif  15215  bpoly0  15396  sumeven  15728  sumodd  15729  bitsinv1  15781  bitsinvp1  15788  prmreclem4  16245  prmreclem5  16246  gsumfsum  20158  fsumcn  23475  ovolfiniun  24105  volfiniun  24151  itg10  24292  itgfsum  24430  dvmptfsum  24578  abelthlem6  25031  logfac  25192  log2ublem3  25534  harmonicbnd3  25593  cht1  25750  dchrisumlem1  26073  dchrisumlem3  26075  logdivbnd  26140  pntrsumbnd2  26151  pntrlog2bndlem4  26164  finsumvtxdg2size  27340  esumpcvgval  31447  signsvf0  31960  signsvf1  31961  repr0  31992  breprexplemc  32013  tgoldbachgtda  32042  mettrifi  35195  rrncmslem  35270  mccl  42240  dvmptfprod  42587  dvnprodlem3  42590  sge0rnn0  43007  sge00  43015  sge0sn  43018
  Copyright terms: Public domain W3C validator