| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12922 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1z 12649 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
| 4 | 0ss 4399 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 7 | 6, 1 | eleqtrdi 2850 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 8 | c0ex 11256 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | 8 | fvconst2 7225 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 11 | noel 4337 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 12 | 11 | iffalsei 4534 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 13 | 10, 12 | eqtr4di 2794 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 16 | 1, 3, 5, 13, 15 | zsum 15755 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 17 | 16 | mptru 1546 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 18 | fclim 15590 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 19 | ffun 6738 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 21 | serclim0 15614 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 23 | funbrfv 6956 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 25 | 17, 24 | eqtri 2764 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ⊆ wss 3950 ∅c0 4332 ifcif 4524 {csn 4625 class class class wbr 5142 × cxp 5682 dom cdm 5684 Fun wfun 6554 ⟶wf 6556 ‘cfv 6560 ℂcc 11154 0cc0 11156 1c1 11157 + caddc 11159 ℕcn 12267 ℤcz 12615 ℤ≥cuz 12879 seqcseq 14043 ⇝ cli 15521 Σcsu 15723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 |
| This theorem is referenced by: sumz 15759 fsumf1o 15760 fsumcllem 15769 fsumadd 15777 fsum2d 15808 fsumrev2 15819 fsummulc2 15821 fsumconst 15827 modfsummod 15831 fsumabs 15838 telfsumo 15839 fsumparts 15843 fsumrelem 15844 fsumrlim 15848 fsumo1 15849 fsumiun 15858 isumsplit 15877 arisum 15897 arisum2 15898 pwdif 15905 bpoly0 16087 sumeven 16425 sumodd 16426 bitsinv1 16480 bitsinvp1 16487 prmreclem4 16958 prmreclem5 16959 gsumfsum 21453 fsumcn 24895 ovolfiniun 25537 volfiniun 25583 itg10 25724 itgfsum 25863 dvmptfsum 26014 abelthlem6 26481 logfac 26644 log2ublem3 26992 harmonicbnd3 27052 cht1 27209 dchrisumlem1 27534 dchrisumlem3 27536 logdivbnd 27601 pntrsumbnd2 27612 pntrlog2bndlem4 27625 finsumvtxdg2size 29569 esumpcvgval 34080 signsvf0 34596 signsvf1 34597 repr0 34627 breprexplemc 34648 tgoldbachgtda 34677 mettrifi 37765 rrncmslem 37840 deg1gprod 42142 sumcubes 42352 mccl 45618 dvmptfprod 45965 dvnprodlem3 45968 sge0rnn0 46388 sge00 46396 sge0sn 46399 |
| Copyright terms: Public domain | W3C validator |