![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version |
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sum0 | β’ Ξ£π β β π΄ = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12865 | . . . 4 β’ β = (β€β₯β1) | |
2 | 1z 12592 | . . . . 5 β’ 1 β β€ | |
3 | 2 | a1i 11 | . . . 4 β’ (β€ β 1 β β€) |
4 | 0ss 4397 | . . . . 5 β’ β β β | |
5 | 4 | a1i 11 | . . . 4 β’ (β€ β β β β) |
6 | simpr 486 | . . . . . . 7 β’ ((β€ β§ π β β) β π β β) | |
7 | 6, 1 | eleqtrdi 2844 | . . . . . 6 β’ ((β€ β§ π β β) β π β (β€β₯β1)) |
8 | c0ex 11208 | . . . . . . 7 β’ 0 β V | |
9 | 8 | fvconst2 7205 | . . . . . 6 β’ (π β (β€β₯β1) β (((β€β₯β1) Γ {0})βπ) = 0) |
10 | 7, 9 | syl 17 | . . . . 5 β’ ((β€ β§ π β β) β (((β€β₯β1) Γ {0})βπ) = 0) |
11 | noel 4331 | . . . . . 6 β’ Β¬ π β β | |
12 | 11 | iffalsei 4539 | . . . . 5 β’ if(π β β , π΄, 0) = 0 |
13 | 10, 12 | eqtr4di 2791 | . . . 4 β’ ((β€ β§ π β β) β (((β€β₯β1) Γ {0})βπ) = if(π β β , π΄, 0)) |
14 | 11 | pm2.21i 119 | . . . . 5 β’ (π β β β π΄ β β) |
15 | 14 | adantl 483 | . . . 4 β’ ((β€ β§ π β β ) β π΄ β β) |
16 | 1, 3, 5, 13, 15 | zsum 15664 | . . 3 β’ (β€ β Ξ£π β β π΄ = ( β βseq1( + , ((β€β₯β1) Γ {0})))) |
17 | 16 | mptru 1549 | . 2 β’ Ξ£π β β π΄ = ( β βseq1( + , ((β€β₯β1) Γ {0}))) |
18 | fclim 15497 | . . . 4 β’ β :dom β βΆβ | |
19 | ffun 6721 | . . . 4 β’ ( β :dom β βΆβ β Fun β ) | |
20 | 18, 19 | ax-mp 5 | . . 3 β’ Fun β |
21 | serclim0 15521 | . . . 4 β’ (1 β β€ β seq1( + , ((β€β₯β1) Γ {0})) β 0) | |
22 | 2, 21 | ax-mp 5 | . . 3 β’ seq1( + , ((β€β₯β1) Γ {0})) β 0 |
23 | funbrfv 6943 | . . 3 β’ (Fun β β (seq1( + , ((β€β₯β1) Γ {0})) β 0 β ( β βseq1( + , ((β€β₯β1) Γ {0}))) = 0)) | |
24 | 20, 22, 23 | mp2 9 | . 2 β’ ( β βseq1( + , ((β€β₯β1) Γ {0}))) = 0 |
25 | 17, 24 | eqtri 2761 | 1 β’ Ξ£π β β π΄ = 0 |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 397 = wceq 1542 β€wtru 1543 β wcel 2107 β wss 3949 β c0 4323 ifcif 4529 {csn 4629 class class class wbr 5149 Γ cxp 5675 dom cdm 5677 Fun wfun 6538 βΆwf 6540 βcfv 6544 βcc 11108 0cc0 11110 1c1 11111 + caddc 11113 βcn 12212 β€cz 12558 β€β₯cuz 12822 seqcseq 13966 β cli 15428 Ξ£csu 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 |
This theorem is referenced by: sumz 15668 fsumf1o 15669 fsumcllem 15678 fsumadd 15686 fsum2d 15717 fsumrev2 15728 fsummulc2 15730 fsumconst 15736 modfsummod 15740 fsumabs 15747 telfsumo 15748 fsumparts 15752 fsumrelem 15753 fsumrlim 15757 fsumo1 15758 fsumiun 15767 isumsplit 15786 arisum 15806 arisum2 15807 pwdif 15814 bpoly0 15994 sumeven 16330 sumodd 16331 bitsinv1 16383 bitsinvp1 16390 prmreclem4 16852 prmreclem5 16853 gsumfsum 21012 fsumcn 24386 ovolfiniun 25018 volfiniun 25064 itg10 25205 itgfsum 25344 dvmptfsum 25492 abelthlem6 25948 logfac 26109 log2ublem3 26453 harmonicbnd3 26512 cht1 26669 dchrisumlem1 26992 dchrisumlem3 26994 logdivbnd 27059 pntrsumbnd2 27070 pntrlog2bndlem4 27083 finsumvtxdg2size 28807 esumpcvgval 33076 signsvf0 33591 signsvf1 33592 repr0 33623 breprexplemc 33644 tgoldbachgtda 33673 mettrifi 36625 rrncmslem 36700 sumcubes 41211 mccl 44314 dvmptfprod 44661 dvnprodlem3 44664 sge0rnn0 45084 sge00 45092 sge0sn 45095 |
Copyright terms: Public domain | W3C validator |