| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sum0 | Structured version Visualization version GIF version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 | ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12796 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1z 12523 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) |
| 4 | 0ss 4353 | . . . . 5 ⊢ ∅ ⊆ ℕ | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ⊆ ℕ) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 7 | 6, 1 | eleqtrdi 2838 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
| 8 | c0ex 11128 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | 8 | fvconst2 7144 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘1) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 10 | 7, 9 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = 0) |
| 11 | noel 4291 | . . . . . 6 ⊢ ¬ 𝑘 ∈ ∅ | |
| 12 | 11 | iffalsei 4488 | . . . . 5 ⊢ if(𝑘 ∈ ∅, 𝐴, 0) = 0 |
| 13 | 10, 12 | eqtr4di 2782 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℤ≥‘1) × {0})‘𝑘) = if(𝑘 ∈ ∅, 𝐴, 0)) |
| 14 | 11 | pm2.21i 119 | . . . . 5 ⊢ (𝑘 ∈ ∅ → 𝐴 ∈ ℂ) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ ∅) → 𝐴 ∈ ℂ) |
| 16 | 1, 3, 5, 13, 15 | zsum 15643 | . . 3 ⊢ (⊤ → Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0})))) |
| 17 | 16 | mptru 1547 | . 2 ⊢ Σ𝑘 ∈ ∅ 𝐴 = ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) |
| 18 | fclim 15478 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
| 19 | ffun 6659 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
| 21 | serclim0 15502 | . . . 4 ⊢ (1 ∈ ℤ → seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0) | |
| 22 | 2, 21 | ax-mp 5 | . . 3 ⊢ seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 |
| 23 | funbrfv 6875 | . . 3 ⊢ (Fun ⇝ → (seq1( + , ((ℤ≥‘1) × {0})) ⇝ 0 → ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0)) | |
| 24 | 20, 22, 23 | mp2 9 | . 2 ⊢ ( ⇝ ‘seq1( + , ((ℤ≥‘1) × {0}))) = 0 |
| 25 | 17, 24 | eqtri 2752 | 1 ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 ifcif 4478 {csn 4579 class class class wbr 5095 × cxp 5621 dom cdm 5623 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 ℕcn 12146 ℤcz 12489 ℤ≥cuz 12753 seqcseq 13926 ⇝ cli 15409 Σcsu 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 |
| This theorem is referenced by: sumz 15647 fsumf1o 15648 fsumcllem 15657 fsumadd 15665 fsum2d 15696 fsumrev2 15707 fsummulc2 15709 fsumconst 15715 modfsummod 15719 fsumabs 15726 telfsumo 15727 fsumparts 15731 fsumrelem 15732 fsumrlim 15736 fsumo1 15737 fsumiun 15746 isumsplit 15765 arisum 15785 arisum2 15786 pwdif 15793 bpoly0 15975 sumeven 16316 sumodd 16317 bitsinv1 16371 bitsinvp1 16378 prmreclem4 16849 prmreclem5 16850 gsumfsum 21359 fsumcn 24777 ovolfiniun 25418 volfiniun 25464 itg10 25605 itgfsum 25744 dvmptfsum 25895 abelthlem6 26362 logfac 26526 log2ublem3 26874 harmonicbnd3 26934 cht1 27091 dchrisumlem1 27416 dchrisumlem3 27418 logdivbnd 27483 pntrsumbnd2 27494 pntrlog2bndlem4 27507 finsumvtxdg2size 29514 esumpcvgval 34044 signsvf0 34547 signsvf1 34548 repr0 34578 breprexplemc 34599 tgoldbachgtda 34628 mettrifi 37736 rrncmslem 37811 deg1gprod 42113 sumcubes 42286 mccl 45580 dvmptfprod 45927 dvnprodlem3 45930 sge0rnn0 46350 sge00 46358 sge0sn 46361 |
| Copyright terms: Public domain | W3C validator |