MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvpr Structured version   Visualization version   GIF version

Theorem funcnvpr 6630
Description: The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvpr ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})

Proof of Theorem funcnvpr
StepHypRef Expression
1 funcnvsn 6618 . . . 4 Fun {⟨𝐴, 𝐵⟩}
2 funcnvsn 6618 . . . 4 Fun {⟨𝐶, 𝐷⟩}
31, 2pm3.2i 470 . . 3 (Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩})
4 df-rn 5700 . . . . . . 7 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
5 rnsnopg 6243 . . . . . . 7 (𝐴𝑈 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
64, 5eqtr3id 2789 . . . . . 6 (𝐴𝑈 → dom {⟨𝐴, 𝐵⟩} = {𝐵})
7 df-rn 5700 . . . . . . 7 ran {⟨𝐶, 𝐷⟩} = dom {⟨𝐶, 𝐷⟩}
8 rnsnopg 6243 . . . . . . 7 (𝐶𝑉 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
97, 8eqtr3id 2789 . . . . . 6 (𝐶𝑉 → dom {⟨𝐶, 𝐷⟩} = {𝐷})
106, 9ineqan12d 4230 . . . . 5 ((𝐴𝑈𝐶𝑉) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
11103adant3 1131 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
12 disjsn2 4717 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
13123ad2ant3 1134 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
1411, 13eqtrd 2775 . . 3 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅)
15 funun 6614 . . 3 (((Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
163, 14, 15sylancr 587 . 2 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
17 df-pr 4634 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1817cnveqi 5888 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
19 cnvun 6165 . . . 4 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2018, 19eqtri 2763 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2120funeqi 6589 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
2216, 21sylibr 234 1 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cun 3961  cin 3962  c0 4339  {csn 4631  {cpr 4633  cop 4637  ccnv 5688  dom cdm 5689  ran crn 5690  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565
This theorem is referenced by:  funcnvtp  6631  funcnvqp  6632  funcnvs2  14949
  Copyright terms: Public domain W3C validator