MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvpr Structured version   Visualization version   GIF version

Theorem funcnvpr 6598
Description: The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvpr ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})

Proof of Theorem funcnvpr
StepHypRef Expression
1 funcnvsn 6586 . . . 4 Fun {⟨𝐴, 𝐵⟩}
2 funcnvsn 6586 . . . 4 Fun {⟨𝐶, 𝐷⟩}
31, 2pm3.2i 470 . . 3 (Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩})
4 df-rn 5665 . . . . . . 7 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
5 rnsnopg 6210 . . . . . . 7 (𝐴𝑈 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
64, 5eqtr3id 2784 . . . . . 6 (𝐴𝑈 → dom {⟨𝐴, 𝐵⟩} = {𝐵})
7 df-rn 5665 . . . . . . 7 ran {⟨𝐶, 𝐷⟩} = dom {⟨𝐶, 𝐷⟩}
8 rnsnopg 6210 . . . . . . 7 (𝐶𝑉 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
97, 8eqtr3id 2784 . . . . . 6 (𝐶𝑉 → dom {⟨𝐶, 𝐷⟩} = {𝐷})
106, 9ineqan12d 4197 . . . . 5 ((𝐴𝑈𝐶𝑉) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
11103adant3 1132 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
12 disjsn2 4688 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
13123ad2ant3 1135 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
1411, 13eqtrd 2770 . . 3 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅)
15 funun 6582 . . 3 (((Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
163, 14, 15sylancr 587 . 2 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
17 df-pr 4604 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1817cnveqi 5854 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
19 cnvun 6131 . . . 4 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2018, 19eqtri 2758 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2120funeqi 6557 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
2216, 21sylibr 234 1 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cun 3924  cin 3925  c0 4308  {csn 4601  {cpr 4603  cop 4607  ccnv 5653  dom cdm 5654  ran crn 5655  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533
This theorem is referenced by:  funcnvtp  6599  funcnvqp  6600  funcnvs2  14932
  Copyright terms: Public domain W3C validator