Proof of Theorem funcnvpr
Step | Hyp | Ref
| Expression |
1 | | funcnvsn 6476 |
. . . 4
⊢ Fun ◡{〈𝐴, 𝐵〉} |
2 | | funcnvsn 6476 |
. . . 4
⊢ Fun ◡{〈𝐶, 𝐷〉} |
3 | 1, 2 | pm3.2i 471 |
. . 3
⊢ (Fun
◡{〈𝐴, 𝐵〉} ∧ Fun ◡{〈𝐶, 𝐷〉}) |
4 | | df-rn 5595 |
. . . . . . 7
⊢ ran
{〈𝐴, 𝐵〉} = dom ◡{〈𝐴, 𝐵〉} |
5 | | rnsnopg 6117 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑈 → ran {〈𝐴, 𝐵〉} = {𝐵}) |
6 | 4, 5 | eqtr3id 2792 |
. . . . . 6
⊢ (𝐴 ∈ 𝑈 → dom ◡{〈𝐴, 𝐵〉} = {𝐵}) |
7 | | df-rn 5595 |
. . . . . . 7
⊢ ran
{〈𝐶, 𝐷〉} = dom ◡{〈𝐶, 𝐷〉} |
8 | | rnsnopg 6117 |
. . . . . . 7
⊢ (𝐶 ∈ 𝑉 → ran {〈𝐶, 𝐷〉} = {𝐷}) |
9 | 7, 8 | eqtr3id 2792 |
. . . . . 6
⊢ (𝐶 ∈ 𝑉 → dom ◡{〈𝐶, 𝐷〉} = {𝐷}) |
10 | 6, 9 | ineqan12d 4148 |
. . . . 5
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) → (dom ◡{〈𝐴, 𝐵〉} ∩ dom ◡{〈𝐶, 𝐷〉}) = ({𝐵} ∩ {𝐷})) |
11 | 10 | 3adant3 1131 |
. . . 4
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → (dom ◡{〈𝐴, 𝐵〉} ∩ dom ◡{〈𝐶, 𝐷〉}) = ({𝐵} ∩ {𝐷})) |
12 | | disjsn2 4648 |
. . . . 5
⊢ (𝐵 ≠ 𝐷 → ({𝐵} ∩ {𝐷}) = ∅) |
13 | 12 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → ({𝐵} ∩ {𝐷}) = ∅) |
14 | 11, 13 | eqtrd 2778 |
. . 3
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → (dom ◡{〈𝐴, 𝐵〉} ∩ dom ◡{〈𝐶, 𝐷〉}) = ∅) |
15 | | funun 6472 |
. . 3
⊢ (((Fun
◡{〈𝐴, 𝐵〉} ∧ Fun ◡{〈𝐶, 𝐷〉}) ∧ (dom ◡{〈𝐴, 𝐵〉} ∩ dom ◡{〈𝐶, 𝐷〉}) = ∅) → Fun (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉})) |
16 | 3, 14, 15 | sylancr 587 |
. 2
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → Fun (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉})) |
17 | | df-pr 4564 |
. . . . 5
⊢
{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
18 | 17 | cnveqi 5776 |
. . . 4
⊢ ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ◡({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
19 | | cnvun 6039 |
. . . 4
⊢ ◡({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) |
20 | 18, 19 | eqtri 2766 |
. . 3
⊢ ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) |
21 | 20 | funeqi 6447 |
. 2
⊢ (Fun
◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ↔ Fun (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉})) |
22 | 16, 21 | sylibr 233 |
1
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷) → Fun ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}) |