MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvpr Structured version   Visualization version   GIF version

Theorem funcnvpr 6488
Description: The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvpr ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})

Proof of Theorem funcnvpr
StepHypRef Expression
1 funcnvsn 6476 . . . 4 Fun {⟨𝐴, 𝐵⟩}
2 funcnvsn 6476 . . . 4 Fun {⟨𝐶, 𝐷⟩}
31, 2pm3.2i 471 . . 3 (Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩})
4 df-rn 5595 . . . . . . 7 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
5 rnsnopg 6117 . . . . . . 7 (𝐴𝑈 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
64, 5eqtr3id 2792 . . . . . 6 (𝐴𝑈 → dom {⟨𝐴, 𝐵⟩} = {𝐵})
7 df-rn 5595 . . . . . . 7 ran {⟨𝐶, 𝐷⟩} = dom {⟨𝐶, 𝐷⟩}
8 rnsnopg 6117 . . . . . . 7 (𝐶𝑉 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
97, 8eqtr3id 2792 . . . . . 6 (𝐶𝑉 → dom {⟨𝐶, 𝐷⟩} = {𝐷})
106, 9ineqan12d 4148 . . . . 5 ((𝐴𝑈𝐶𝑉) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
11103adant3 1131 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
12 disjsn2 4648 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
13123ad2ant3 1134 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
1411, 13eqtrd 2778 . . 3 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅)
15 funun 6472 . . 3 (((Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
163, 14, 15sylancr 587 . 2 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
17 df-pr 4564 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1817cnveqi 5776 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
19 cnvun 6039 . . . 4 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2018, 19eqtri 2766 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2120funeqi 6447 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
2216, 21sylibr 233 1 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cun 3884  cin 3885  c0 4256  {csn 4561  {cpr 4563  cop 4567  ccnv 5583  dom cdm 5584  ran crn 5585  Fun wfun 6420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-fun 6428
This theorem is referenced by:  funcnvtp  6489  funcnvqp  6490  funcnvs2  14636
  Copyright terms: Public domain W3C validator