![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssincl | Structured version Visualization version GIF version |
Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
css0.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssincl | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2778 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
3 | 1, 2 | ocvss 20413 | . . . . 5 ⊢ ((ocv‘𝑊)‘𝐴) ⊆ (Base‘𝑊) |
4 | 1, 2 | ocvss 20413 | . . . . 5 ⊢ ((ocv‘𝑊)‘𝐵) ⊆ (Base‘𝑊) |
5 | 3, 4 | unssi 4011 | . . . 4 ⊢ (((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)) ⊆ (Base‘𝑊) |
6 | css0.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
7 | 1, 6, 2 | ocvcss 20430 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)) ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶) |
8 | 5, 7 | mpan2 681 | . . 3 ⊢ (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶) |
9 | 2, 6 | cssi 20427 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → 𝐴 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴))) |
10 | 2, 6 | cssi 20427 | . . . . . 6 ⊢ (𝐵 ∈ 𝐶 → 𝐵 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵))) |
11 | 9, 10 | ineqan12d 4039 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) = (((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴)) ∩ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))) |
12 | 2 | unocv 20423 | . . . . 5 ⊢ ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) = (((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴)) ∩ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵))) |
13 | 11, 12 | syl6eqr 2832 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) = ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)))) |
14 | 13 | eleq1d 2844 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶)) |
15 | 8, 14 | syl5ibrcom 239 | . 2 ⊢ (𝑊 ∈ PreHil → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
16 | 15 | 3impib 1105 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∪ cun 3790 ∩ cin 3791 ⊆ wss 3792 ‘cfv 6135 Basecbs 16255 PreHilcphl 20367 ocvcocv 20403 ClSubSpccss 20404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-ghm 18042 df-mgp 18877 df-ur 18889 df-ring 18936 df-oppr 19010 df-rnghom 19104 df-staf 19237 df-srng 19238 df-lmod 19257 df-lmhm 19417 df-lvec 19498 df-sra 19569 df-rgmod 19570 df-phl 20369 df-ocv 20406 df-css 20407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |