| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssincl | Structured version Visualization version GIF version | ||
| Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| css0.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cssincl | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 3 | 1, 2 | ocvss 21605 | . . . . 5 ⊢ ((ocv‘𝑊)‘𝐴) ⊆ (Base‘𝑊) |
| 4 | 1, 2 | ocvss 21605 | . . . . 5 ⊢ ((ocv‘𝑊)‘𝐵) ⊆ (Base‘𝑊) |
| 5 | 3, 4 | unssi 4141 | . . . 4 ⊢ (((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)) ⊆ (Base‘𝑊) |
| 6 | css0.c | . . . . 5 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 7 | 1, 6, 2 | ocvcss 21622 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)) ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶) |
| 8 | 5, 7 | mpan2 691 | . . 3 ⊢ (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶) |
| 9 | 2, 6 | cssi 21619 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → 𝐴 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴))) |
| 10 | 2, 6 | cssi 21619 | . . . . . 6 ⊢ (𝐵 ∈ 𝐶 → 𝐵 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵))) |
| 11 | 9, 10 | ineqan12d 4172 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) = (((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴)) ∩ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))) |
| 12 | 2 | unocv 21615 | . . . . 5 ⊢ ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) = (((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴)) ∩ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵))) |
| 13 | 11, 12 | eqtr4di 2784 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) = ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)))) |
| 14 | 13 | eleq1d 2816 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶)) |
| 15 | 8, 14 | syl5ibrcom 247 | . 2 ⊢ (𝑊 ∈ PreHil → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
| 16 | 15 | 3impib 1116 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 ‘cfv 6481 Basecbs 17117 PreHilcphl 21559 ocvcocv 21595 ClSubSpccss 21596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-grp 18846 df-ghm 19123 df-mgp 20057 df-ur 20098 df-ring 20151 df-oppr 20253 df-rhm 20388 df-staf 20752 df-srng 20753 df-lmod 20793 df-lmhm 20954 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-phl 21561 df-ocv 21598 df-css 21599 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |