MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offsplitfpar Structured version   Visualization version   GIF version

Theorem offsplitfpar 8124
Description: Express the function operation map f by the functions defined in fsplit 8122 and fpar 8121. (Contributed by AV, 4-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
offsplitfpar (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))

Proof of Theorem offsplitfpar
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.h . . . . 5 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2 fsplitfpar.s . . . . 5 𝑆 = ((1st ↾ I ) ↾ 𝐴)
31, 2fsplitfpar 8123 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
43coeq2d 5865 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
543ad2ant1 1131 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
6 dffn3 6735 . . . . . . 7 ( + Fn 𝐶+ :𝐶⟶ran + )
76biimpi 215 . . . . . 6 ( + Fn 𝐶+ :𝐶⟶ran + )
87adantr 480 . . . . 5 (( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶) → + :𝐶⟶ran + )
983ad2ant3 1133 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → + :𝐶⟶ran + )
10 simpl3r 1227 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (ran 𝐹 × ran 𝐺) ⊆ 𝐶)
11 simp1l 1195 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐹 Fn 𝐴)
12 fnfvelrn 7090 . . . . . . 7 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
1311, 12sylan 579 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
14 simp1r 1196 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐺 Fn 𝐴)
15 fnfvelrn 7090 . . . . . . 7 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1614, 15sylan 579 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1713, 16opelxpd 5717 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (ran 𝐹 × ran 𝐺))
1810, 17sseldd 3981 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ 𝐶)
199, 18cofmpt 7141 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)))
20 df-ov 7423 . . . . 5 ((𝐹𝑎) + (𝐺𝑎)) = ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)
2120eqcomi 2737 . . . 4 ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩) = ((𝐹𝑎) + (𝐺𝑎))
2221mpteq2i 5253 . . 3 (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2319, 22eqtrdi 2784 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
24 offval3 7986 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹f + 𝐺) = (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))))
25 fndm 6657 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
26 fndm 6657 . . . . . . . 8 (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴)
2725, 26ineqan12d 4214 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐴))
28 inidm 4219 . . . . . . 7 (𝐴𝐴) = 𝐴
2927, 28eqtrdi 2784 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = 𝐴)
3029mpteq1d 5243 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3124, 30sylan9eqr 2790 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝐹f + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3231eqcomd 2734 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
33323adant3 1130 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
345, 23, 333eqtrd 2772 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3471  cin 3946  wss 3947  cop 4635  cmpt 5231   I cid 5575   × cxp 5676  ccnv 5677  dom cdm 5678  ran crn 5679  cres 5680  ccom 5682   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  f cof 7683  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-1st 7993  df-2nd 7994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator