MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offsplitfpar Structured version   Visualization version   GIF version

Theorem offsplitfpar 8058
Description: Express the function operation map f by the functions defined in fsplit 8056 and fpar 8055. (Contributed by AV, 4-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
offsplitfpar (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))

Proof of Theorem offsplitfpar
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.h . . . . 5 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2 fsplitfpar.s . . . . 5 𝑆 = ((1st ↾ I ) ↾ 𝐴)
31, 2fsplitfpar 8057 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
43coeq2d 5808 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
543ad2ant1 1133 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
6 dffn3 6671 . . . . . . 7 ( + Fn 𝐶+ :𝐶⟶ran + )
76biimpi 216 . . . . . 6 ( + Fn 𝐶+ :𝐶⟶ran + )
87adantr 480 . . . . 5 (( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶) → + :𝐶⟶ran + )
983ad2ant3 1135 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → + :𝐶⟶ran + )
10 simpl3r 1230 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (ran 𝐹 × ran 𝐺) ⊆ 𝐶)
11 simp1l 1198 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐹 Fn 𝐴)
12 fnfvelrn 7022 . . . . . . 7 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
1311, 12sylan 580 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
14 simp1r 1199 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐺 Fn 𝐴)
15 fnfvelrn 7022 . . . . . . 7 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1614, 15sylan 580 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1713, 16opelxpd 5660 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (ran 𝐹 × ran 𝐺))
1810, 17sseldd 3931 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ 𝐶)
199, 18cofmpt 7074 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)))
20 df-ov 7358 . . . . 5 ((𝐹𝑎) + (𝐺𝑎)) = ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)
2120eqcomi 2742 . . . 4 ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩) = ((𝐹𝑎) + (𝐺𝑎))
2221mpteq2i 5191 . . 3 (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2319, 22eqtrdi 2784 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
24 offval3 7923 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹f + 𝐺) = (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))))
25 fndm 6592 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
26 fndm 6592 . . . . . . . 8 (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴)
2725, 26ineqan12d 4171 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐴))
28 inidm 4176 . . . . . . 7 (𝐴𝐴) = 𝐴
2927, 28eqtrdi 2784 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = 𝐴)
3029mpteq1d 5185 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3124, 30sylan9eqr 2790 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝐹f + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3231eqcomd 2739 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
33323adant3 1132 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
345, 23, 333eqtrd 2772 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  wss 3898  cop 4583  cmpt 5176   I cid 5515   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  cres 5623  ccom 5625   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617  1st c1st 7928  2nd c2nd 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-1st 7930  df-2nd 7931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator