MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offsplitfpar Structured version   Visualization version   GIF version

Theorem offsplitfpar 7897
Description: Express the function operation map f by the functions defined in fsplit 7894 and fpar 7893. (Contributed by AV, 4-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
offsplitfpar (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))

Proof of Theorem offsplitfpar
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.h . . . . 5 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2 fsplitfpar.s . . . . 5 𝑆 = ((1st ↾ I ) ↾ 𝐴)
31, 2fsplitfpar 7896 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
43coeq2d 5740 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
543ad2ant1 1135 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
6 dffn3 6567 . . . . . . 7 ( + Fn 𝐶+ :𝐶⟶ran + )
76biimpi 219 . . . . . 6 ( + Fn 𝐶+ :𝐶⟶ran + )
87adantr 484 . . . . 5 (( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶) → + :𝐶⟶ran + )
983ad2ant3 1137 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → + :𝐶⟶ran + )
10 simpl3r 1231 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (ran 𝐹 × ran 𝐺) ⊆ 𝐶)
11 simp1l 1199 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐹 Fn 𝐴)
12 fnfvelrn 6910 . . . . . . 7 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
1311, 12sylan 583 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
14 simp1r 1200 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐺 Fn 𝐴)
15 fnfvelrn 6910 . . . . . . 7 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1614, 15sylan 583 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1713, 16opelxpd 5598 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (ran 𝐹 × ran 𝐺))
1810, 17sseldd 3911 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ 𝐶)
199, 18cofmpt 6956 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)))
20 df-ov 7225 . . . . 5 ((𝐹𝑎) + (𝐺𝑎)) = ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)
2120eqcomi 2747 . . . 4 ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩) = ((𝐹𝑎) + (𝐺𝑎))
2221mpteq2i 5156 . . 3 (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2319, 22eqtrdi 2795 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
24 offval3 7764 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹f + 𝐺) = (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))))
25 fndm 6490 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
26 fndm 6490 . . . . . . . 8 (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴)
2725, 26ineqan12d 4138 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐴))
28 inidm 4142 . . . . . . 7 (𝐴𝐴) = 𝐴
2927, 28eqtrdi 2795 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = 𝐴)
3029mpteq1d 5153 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3124, 30sylan9eqr 2801 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝐹f + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3231eqcomd 2744 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
33323adant3 1134 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
345, 23, 333eqtrd 2782 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  Vcvv 3415  cin 3874  wss 3875  cop 4556  cmpt 5144   I cid 5463   × cxp 5558  ccnv 5559  dom cdm 5560  ran crn 5561  cres 5562  ccom 5564   Fn wfn 6384  wf 6385  cfv 6389  (class class class)co 7222  f cof 7476  1st c1st 7768  2nd c2nd 7769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5188  ax-sep 5201  ax-nul 5208  ax-pr 5331  ax-un 7532
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-iun 4915  df-br 5063  df-opab 5125  df-mpt 5145  df-id 5464  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-ov 7225  df-oprab 7226  df-mpo 7227  df-of 7478  df-1st 7770  df-2nd 7771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator