MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offsplitfpar Structured version   Visualization version   GIF version

Theorem offsplitfpar 8123
Description: Express the function operation map f by the functions defined in fsplit 8121 and fpar 8120. (Contributed by AV, 4-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
offsplitfpar (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))

Proof of Theorem offsplitfpar
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.h . . . . 5 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2 fsplitfpar.s . . . . 5 𝑆 = ((1st ↾ I ) ↾ 𝐴)
31, 2fsplitfpar 8122 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))
43coeq2d 5847 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
543ad2ant1 1133 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)))
6 dffn3 6723 . . . . . . 7 ( + Fn 𝐶+ :𝐶⟶ran + )
76biimpi 216 . . . . . 6 ( + Fn 𝐶+ :𝐶⟶ran + )
87adantr 480 . . . . 5 (( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶) → + :𝐶⟶ran + )
983ad2ant3 1135 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → + :𝐶⟶ran + )
10 simpl3r 1230 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (ran 𝐹 × ran 𝐺) ⊆ 𝐶)
11 simp1l 1198 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐹 Fn 𝐴)
12 fnfvelrn 7075 . . . . . . 7 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
1311, 12sylan 580 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
14 simp1r 1199 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → 𝐺 Fn 𝐴)
15 fnfvelrn 7075 . . . . . . 7 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1614, 15sylan 580 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1713, 16opelxpd 5698 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ (ran 𝐹 × ran 𝐺))
1810, 17sseldd 3964 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ 𝐶)
199, 18cofmpt 7127 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)))
20 df-ov 7413 . . . . 5 ((𝐹𝑎) + (𝐺𝑎)) = ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)
2120eqcomi 2745 . . . 4 ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩) = ((𝐹𝑎) + (𝐺𝑎))
2221mpteq2i 5222 . . 3 (𝑎𝐴 ↦ ( + ‘⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2319, 22eqtrdi 2787 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩)) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
24 offval3 7986 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹f + 𝐺) = (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))))
25 fndm 6646 . . . . . . . 8 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
26 fndm 6646 . . . . . . . 8 (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴)
2725, 26ineqan12d 4202 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐴))
28 inidm 4207 . . . . . . 7 (𝐴𝐴) = 𝐴
2927, 28eqtrdi 2787 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom 𝐹 ∩ dom 𝐺) = 𝐴)
3029mpteq1d 5215 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3124, 30sylan9eqr 2793 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝐹f + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
3231eqcomd 2742 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
33323adant3 1132 . 2 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝐹f + 𝐺))
345, 23, 333eqtrd 2775 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐹𝑉𝐺𝑊) ∧ ( + Fn 𝐶 ∧ (ran 𝐹 × ran 𝐺) ⊆ 𝐶)) → ( + ∘ (𝐻𝑆)) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  wss 3931  cop 4612  cmpt 5206   I cid 5552   × cxp 5657  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-1st 7993  df-2nd 7994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator