MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offsplitfpar Structured version   Visualization version   GIF version

Theorem offsplitfpar 8071
Description: Express the function operation map ∘f by the functions defined in fsplit 8069 and fpar 8068. (Contributed by AV, 4-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = ((β—‘(1st β†Ύ (V Γ— V)) ∘ (𝐹 ∘ (1st β†Ύ (V Γ— V)))) ∩ (β—‘(2nd β†Ύ (V Γ— V)) ∘ (𝐺 ∘ (2nd β†Ύ (V Γ— V)))))
fsplitfpar.s 𝑆 = (β—‘(1st β†Ύ I ) β†Ύ 𝐴)
Assertion
Ref Expression
offsplitfpar (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ ( + ∘ (𝐻 ∘ 𝑆)) = (𝐹 ∘f + 𝐺))

Proof of Theorem offsplitfpar
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.h . . . . 5 𝐻 = ((β—‘(1st β†Ύ (V Γ— V)) ∘ (𝐹 ∘ (1st β†Ύ (V Γ— V)))) ∩ (β—‘(2nd β†Ύ (V Γ— V)) ∘ (𝐺 ∘ (2nd β†Ύ (V Γ— V)))))
2 fsplitfpar.s . . . . 5 𝑆 = (β—‘(1st β†Ύ I ) β†Ύ 𝐴)
31, 2fsplitfpar 8070 . . . 4 ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) β†’ (𝐻 ∘ 𝑆) = (π‘Ž ∈ 𝐴 ↦ ⟨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩))
43coeq2d 5838 . . 3 ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) β†’ ( + ∘ (𝐻 ∘ 𝑆)) = ( + ∘ (π‘Ž ∈ 𝐴 ↦ ⟨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩)))
543ad2ant1 1133 . 2 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ ( + ∘ (𝐻 ∘ 𝑆)) = ( + ∘ (π‘Ž ∈ 𝐴 ↦ ⟨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩)))
6 dffn3 6701 . . . . . . 7 ( + Fn 𝐢 ↔ + :𝐢⟢ran + )
76biimpi 215 . . . . . 6 ( + Fn 𝐢 β†’ + :𝐢⟢ran + )
87adantr 481 . . . . 5 (( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢) β†’ + :𝐢⟢ran + )
983ad2ant3 1135 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ + :𝐢⟢ran + )
10 simpl3r 1229 . . . . 5 ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) ∧ π‘Ž ∈ 𝐴) β†’ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)
11 simp1l 1197 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ 𝐹 Fn 𝐴)
12 fnfvelrn 7051 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ π‘Ž ∈ 𝐴) β†’ (πΉβ€˜π‘Ž) ∈ ran 𝐹)
1311, 12sylan 580 . . . . . 6 ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) ∧ π‘Ž ∈ 𝐴) β†’ (πΉβ€˜π‘Ž) ∈ ran 𝐹)
14 simp1r 1198 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ 𝐺 Fn 𝐴)
15 fnfvelrn 7051 . . . . . . 7 ((𝐺 Fn 𝐴 ∧ π‘Ž ∈ 𝐴) β†’ (πΊβ€˜π‘Ž) ∈ ran 𝐺)
1614, 15sylan 580 . . . . . 6 ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) ∧ π‘Ž ∈ 𝐴) β†’ (πΊβ€˜π‘Ž) ∈ ran 𝐺)
1713, 16opelxpd 5691 . . . . 5 ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) ∧ π‘Ž ∈ 𝐴) β†’ ⟨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩ ∈ (ran 𝐹 Γ— ran 𝐺))
1810, 17sseldd 3963 . . . 4 ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) ∧ π‘Ž ∈ 𝐴) β†’ ⟨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩ ∈ 𝐢)
199, 18cofmpt 7098 . . 3 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ ( + ∘ (π‘Ž ∈ 𝐴 ↦ ⟨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩)) = (π‘Ž ∈ 𝐴 ↦ ( + β€˜βŸ¨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩)))
20 df-ov 7380 . . . . 5 ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž)) = ( + β€˜βŸ¨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩)
2120eqcomi 2740 . . . 4 ( + β€˜βŸ¨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩) = ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))
2221mpteq2i 5230 . . 3 (π‘Ž ∈ 𝐴 ↦ ( + β€˜βŸ¨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩)) = (π‘Ž ∈ 𝐴 ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž)))
2319, 22eqtrdi 2787 . 2 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ ( + ∘ (π‘Ž ∈ 𝐴 ↦ ⟨(πΉβ€˜π‘Ž), (πΊβ€˜π‘Ž)⟩)) = (π‘Ž ∈ 𝐴 ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))))
24 offval3 7935 . . . . 5 ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) β†’ (𝐹 ∘f + 𝐺) = (π‘Ž ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))))
25 fndm 6625 . . . . . . . 8 (𝐹 Fn 𝐴 β†’ dom 𝐹 = 𝐴)
26 fndm 6625 . . . . . . . 8 (𝐺 Fn 𝐴 β†’ dom 𝐺 = 𝐴)
2725, 26ineqan12d 4194 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) β†’ (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐴))
28 inidm 4198 . . . . . . 7 (𝐴 ∩ 𝐴) = 𝐴
2927, 28eqtrdi 2787 . . . . . 6 ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) β†’ (dom 𝐹 ∩ dom 𝐺) = 𝐴)
3029mpteq1d 5220 . . . . 5 ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) β†’ (π‘Ž ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))) = (π‘Ž ∈ 𝐴 ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))))
3124, 30sylan9eqr 2793 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š)) β†’ (𝐹 ∘f + 𝐺) = (π‘Ž ∈ 𝐴 ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))))
3231eqcomd 2737 . . 3 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š)) β†’ (π‘Ž ∈ 𝐴 ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))) = (𝐹 ∘f + 𝐺))
33323adant3 1132 . 2 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ (π‘Ž ∈ 𝐴 ↦ ((πΉβ€˜π‘Ž) + (πΊβ€˜π‘Ž))) = (𝐹 ∘f + 𝐺))
345, 23, 333eqtrd 2775 1 (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) ∧ ( + Fn 𝐢 ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† 𝐢)) β†’ ( + ∘ (𝐻 ∘ 𝑆)) = (𝐹 ∘f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3459   ∩ cin 3927   βŠ† wss 3928  βŸ¨cop 4612   ↦ cmpt 5208   I cid 5550   Γ— cxp 5651  β—‘ccnv 5652  dom cdm 5653  ran crn 5654   β†Ύ cres 5655   ∘ ccom 5657   Fn wfn 6511  βŸΆwf 6512  β€˜cfv 6516  (class class class)co 7377   ∘f cof 7635  1st c1st 7939  2nd c2nd 7940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pr 5404  ax-un 7692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-nul 4303  df-if 4507  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-iun 4976  df-br 5126  df-opab 5188  df-mpt 5209  df-id 5551  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-ov 7380  df-oprab 7381  df-mpo 7382  df-of 7637  df-1st 7941  df-2nd 7942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator