Step | Hyp | Ref
| Expression |
1 | | dffn5 6501 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
2 | 1 | biimpi 208 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
3 | | df-mpt 4966 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} |
4 | 2, 3 | syl6eq 2830 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
5 | | dffn5 6501 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
6 | 5 | biimpi 208 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
7 | | df-mpt 4966 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))} |
8 | 6, 7 | syl6eq 2830 |
. . . . 5
⊢ (𝐺 Fn 𝐴 → 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) |
9 | 4, 8 | ineqan12d 4039 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))})) |
10 | | inopab 5498 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
11 | 9, 10 | syl6eq 2830 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
12 | 11 | dmeqd 5571 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
13 | | 19.42v 1996 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)))) |
14 | | anandi 666 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
15 | 14 | exbii 1892 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
16 | | fvex 6459 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
17 | | eqeq1 2782 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 = (𝐺‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
18 | 16, 17 | ceqsexv 3444 |
. . . . . 6
⊢
(∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥)) |
19 | 18 | anbi2i 616 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) |
20 | 13, 15, 19 | 3bitr3i 293 |
. . . 4
⊢
(∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) |
21 | 20 | abbii 2908 |
. . 3
⊢ {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))} |
22 | | dmopab 5580 |
. . 3
⊢ dom
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
23 | | df-rab 3099 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))} |
24 | 21, 22, 23 | 3eqtr4i 2812 |
. 2
⊢ dom
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} |
25 | 12, 24 | syl6eq 2830 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |