Step | Hyp | Ref
| Expression |
1 | | dffn5 6822 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
2 | 1 | biimpi 215 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
3 | | df-mpt 5162 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} |
4 | 2, 3 | eqtrdi 2795 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
5 | | dffn5 6822 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
6 | 5 | biimpi 215 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
7 | | df-mpt 5162 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))} |
8 | 6, 7 | eqtrdi 2795 |
. . . . 5
⊢ (𝐺 Fn 𝐴 → 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) |
9 | 4, 8 | ineqan12d 4153 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))})) |
10 | | inopab 5736 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
11 | 9, 10 | eqtrdi 2795 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ∩ 𝐺) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
12 | 11 | dmeqd 5811 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))}) |
13 | | 19.42v 1960 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)))) |
14 | | anandi 672 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
15 | 14 | exbii 1853 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))) |
16 | | fvex 6781 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
17 | | eqeq1 2743 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 = (𝐺‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
18 | 16, 17 | ceqsexv 3477 |
. . . . . 6
⊢
(∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥)) ↔ (𝐹‘𝑥) = (𝐺‘𝑥)) |
19 | 18 | anbi2i 622 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) |
20 | 13, 15, 19 | 3bitr3i 300 |
. . . 4
⊢
(∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥))) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) |
21 | 20 | abbii 2809 |
. . 3
⊢ {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))} |
22 | | dmopab 5821 |
. . 3
⊢ dom
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∣ ∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} |
23 | | df-rab 3074 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐺‘𝑥))} |
24 | 21, 22, 23 | 3eqtr4i 2777 |
. 2
⊢ dom
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐺‘𝑥)))} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)} |
25 | 12, 24 | eqtrdi 2795 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐺‘𝑥)}) |