| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1addlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for itg1add 25602. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1fadd.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
| i1fadd.2 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
| itg1add.3 | ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
| Ref | Expression |
|---|---|
| itg1addlem3 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . . . 5 ⊢ (𝑖 = 𝐴 → (𝑖 = 0 ↔ 𝐴 = 0)) | |
| 2 | eqeq1 2733 | . . . . 5 ⊢ (𝑗 = 𝐵 → (𝑗 = 0 ↔ 𝐵 = 0)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((𝑖 = 0 ∧ 𝑗 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 4 | sneq 4599 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → {𝑖} = {𝐴}) | |
| 5 | 4 | imaeq2d 6031 | . . . . . 6 ⊢ (𝑖 = 𝐴 → (◡𝐹 “ {𝑖}) = (◡𝐹 “ {𝐴})) |
| 6 | sneq 4599 | . . . . . . 7 ⊢ (𝑗 = 𝐵 → {𝑗} = {𝐵}) | |
| 7 | 6 | imaeq2d 6031 | . . . . . 6 ⊢ (𝑗 = 𝐵 → (◡𝐺 “ {𝑗}) = (◡𝐺 “ {𝐵})) |
| 8 | 5, 7 | ineqan12d 4185 | . . . . 5 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) = ((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) |
| 9 | 8 | fveq2d 6862 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
| 10 | 3, 9 | ifbieq2d 4515 | . . 3 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
| 11 | itg1add.3 | . . 3 ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) | |
| 12 | c0ex 11168 | . . . 4 ⊢ 0 ∈ V | |
| 13 | fvex 6871 | . . . 4 ⊢ (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) ∈ V | |
| 14 | 12, 13 | ifex 4539 | . . 3 ⊢ if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) ∈ V |
| 15 | 10, 11, 14 | ovmpoa 7544 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐼𝐵) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
| 16 | iffalse 4497 | . 2 ⊢ (¬ (𝐴 = 0 ∧ 𝐵 = 0) → if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | |
| 17 | 15, 16 | sylan9eq 2784 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ifcif 4488 {csn 4589 ◡ccnv 5637 dom cdm 5638 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℝcr 11067 0cc0 11068 volcvol 25364 ∫1citg1 25516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: itg1addlem4 25600 itg1addlem5 25601 |
| Copyright terms: Public domain | W3C validator |