| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1addlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for itg1add 25578. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1fadd.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
| i1fadd.2 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
| itg1add.3 | ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
| Ref | Expression |
|---|---|
| itg1addlem3 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . . . 5 ⊢ (𝑖 = 𝐴 → (𝑖 = 0 ↔ 𝐴 = 0)) | |
| 2 | eqeq1 2733 | . . . . 5 ⊢ (𝑗 = 𝐵 → (𝑗 = 0 ↔ 𝐵 = 0)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((𝑖 = 0 ∧ 𝑗 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 4 | sneq 4595 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → {𝑖} = {𝐴}) | |
| 5 | 4 | imaeq2d 6020 | . . . . . 6 ⊢ (𝑖 = 𝐴 → (◡𝐹 “ {𝑖}) = (◡𝐹 “ {𝐴})) |
| 6 | sneq 4595 | . . . . . . 7 ⊢ (𝑗 = 𝐵 → {𝑗} = {𝐵}) | |
| 7 | 6 | imaeq2d 6020 | . . . . . 6 ⊢ (𝑗 = 𝐵 → (◡𝐺 “ {𝑗}) = (◡𝐺 “ {𝐵})) |
| 8 | 5, 7 | ineqan12d 4181 | . . . . 5 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) = ((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) |
| 9 | 8 | fveq2d 6844 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
| 10 | 3, 9 | ifbieq2d 4511 | . . 3 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
| 11 | itg1add.3 | . . 3 ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) | |
| 12 | c0ex 11144 | . . . 4 ⊢ 0 ∈ V | |
| 13 | fvex 6853 | . . . 4 ⊢ (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) ∈ V | |
| 14 | 12, 13 | ifex 4535 | . . 3 ⊢ if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) ∈ V |
| 15 | 10, 11, 14 | ovmpoa 7524 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐼𝐵) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
| 16 | iffalse 4493 | . 2 ⊢ (¬ (𝐴 = 0 ∧ 𝐵 = 0) → if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | |
| 17 | 15, 16 | sylan9eq 2784 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ifcif 4484 {csn 4585 ◡ccnv 5630 dom cdm 5631 “ cima 5634 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℝcr 11043 0cc0 11044 volcvol 25340 ∫1citg1 25492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: itg1addlem4 25576 itg1addlem5 25577 |
| Copyright terms: Public domain | W3C validator |