MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem3 Structured version   Visualization version   GIF version

Theorem itg1addlem3 25747
Description: Lemma for itg1add 25751. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
Assertion
Ref Expression
itg1addlem3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐵,𝑖,𝑗   𝑖,𝐹,𝑗   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑖,𝑗)

Proof of Theorem itg1addlem3
StepHypRef Expression
1 eqeq1 2739 . . . . 5 (𝑖 = 𝐴 → (𝑖 = 0 ↔ 𝐴 = 0))
2 eqeq1 2739 . . . . 5 (𝑗 = 𝐵 → (𝑗 = 0 ↔ 𝐵 = 0))
31, 2bi2anan9 638 . . . 4 ((𝑖 = 𝐴𝑗 = 𝐵) → ((𝑖 = 0 ∧ 𝑗 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4 sneq 4641 . . . . . . 7 (𝑖 = 𝐴 → {𝑖} = {𝐴})
54imaeq2d 6080 . . . . . 6 (𝑖 = 𝐴 → (𝐹 “ {𝑖}) = (𝐹 “ {𝐴}))
6 sneq 4641 . . . . . . 7 (𝑗 = 𝐵 → {𝑗} = {𝐵})
76imaeq2d 6080 . . . . . 6 (𝑗 = 𝐵 → (𝐺 “ {𝑗}) = (𝐺 “ {𝐵}))
85, 7ineqan12d 4230 . . . . 5 ((𝑖 = 𝐴𝑗 = 𝐵) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) = ((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))
98fveq2d 6911 . . . 4 ((𝑖 = 𝐴𝑗 = 𝐵) → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
103, 9ifbieq2d 4557 . . 3 ((𝑖 = 𝐴𝑗 = 𝐵) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))))
11 itg1add.3 . . 3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
12 c0ex 11253 . . . 4 0 ∈ V
13 fvex 6920 . . . 4 (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))) ∈ V
1412, 13ifex 4581 . . 3 if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))) ∈ V
1510, 11, 14ovmpoa 7588 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐼𝐵) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))))
16 iffalse 4540 . 2 (¬ (𝐴 = 0 ∧ 𝐵 = 0) → if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
1715, 16sylan9eq 2795 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  cin 3962  ifcif 4531  {csn 4631  ccnv 5688  dom cdm 5689  cima 5692  cfv 6563  (class class class)co 7431  cmpo 7433  cr 11152  0cc0 11153  volcvol 25512  1citg1 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-i2m1 11221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  itg1addlem4  25748  itg1addlem4OLD  25749  itg1addlem5  25750
  Copyright terms: Public domain W3C validator