MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem3 Structured version   Visualization version   GIF version

Theorem itg1addlem3 25616
Description: Lemma for itg1add 25619. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
Assertion
Ref Expression
itg1addlem3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐵,𝑖,𝑗   𝑖,𝐹,𝑗   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑖,𝑗)

Proof of Theorem itg1addlem3
StepHypRef Expression
1 eqeq1 2733 . . . . 5 (𝑖 = 𝐴 → (𝑖 = 0 ↔ 𝐴 = 0))
2 eqeq1 2733 . . . . 5 (𝑗 = 𝐵 → (𝑗 = 0 ↔ 𝐵 = 0))
31, 2bi2anan9 638 . . . 4 ((𝑖 = 𝐴𝑗 = 𝐵) → ((𝑖 = 0 ∧ 𝑗 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4 sneq 4589 . . . . . . 7 (𝑖 = 𝐴 → {𝑖} = {𝐴})
54imaeq2d 6015 . . . . . 6 (𝑖 = 𝐴 → (𝐹 “ {𝑖}) = (𝐹 “ {𝐴}))
6 sneq 4589 . . . . . . 7 (𝑗 = 𝐵 → {𝑗} = {𝐵})
76imaeq2d 6015 . . . . . 6 (𝑗 = 𝐵 → (𝐺 “ {𝑗}) = (𝐺 “ {𝐵}))
85, 7ineqan12d 4175 . . . . 5 ((𝑖 = 𝐴𝑗 = 𝐵) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) = ((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))
98fveq2d 6830 . . . 4 ((𝑖 = 𝐴𝑗 = 𝐵) → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
103, 9ifbieq2d 4505 . . 3 ((𝑖 = 𝐴𝑗 = 𝐵) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))))
11 itg1add.3 . . 3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
12 c0ex 11128 . . . 4 0 ∈ V
13 fvex 6839 . . . 4 (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))) ∈ V
1412, 13ifex 4529 . . 3 if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))) ∈ V
1510, 11, 14ovmpoa 7508 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐼𝐵) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))))
16 iffalse 4487 . 2 (¬ (𝐴 = 0 ∧ 𝐵 = 0) → if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵})))) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
1715, 16sylan9eq 2784 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((𝐹 “ {𝐴}) ∩ (𝐺 “ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3904  ifcif 4478  {csn 4579  ccnv 5622  dom cdm 5623  cima 5626  cfv 6486  (class class class)co 7353  cmpo 7355  cr 11027  0cc0 11028  volcvol 25381  1citg1 25533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-mulcl 11090  ax-i2m1 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358
This theorem is referenced by:  itg1addlem4  25617  itg1addlem5  25618
  Copyright terms: Public domain W3C validator