![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1addlem3 | Structured version Visualization version GIF version |
Description: Lemma for itg1add 25751. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1fadd.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
i1fadd.2 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
itg1add.3 | ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
Ref | Expression |
---|---|
itg1addlem3 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2739 | . . . . 5 ⊢ (𝑖 = 𝐴 → (𝑖 = 0 ↔ 𝐴 = 0)) | |
2 | eqeq1 2739 | . . . . 5 ⊢ (𝑗 = 𝐵 → (𝑗 = 0 ↔ 𝐵 = 0)) | |
3 | 1, 2 | bi2anan9 638 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((𝑖 = 0 ∧ 𝑗 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
4 | sneq 4641 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → {𝑖} = {𝐴}) | |
5 | 4 | imaeq2d 6080 | . . . . . 6 ⊢ (𝑖 = 𝐴 → (◡𝐹 “ {𝑖}) = (◡𝐹 “ {𝐴})) |
6 | sneq 4641 | . . . . . . 7 ⊢ (𝑗 = 𝐵 → {𝑗} = {𝐵}) | |
7 | 6 | imaeq2d 6080 | . . . . . 6 ⊢ (𝑗 = 𝐵 → (◡𝐺 “ {𝑗}) = (◡𝐺 “ {𝐵})) |
8 | 5, 7 | ineqan12d 4230 | . . . . 5 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) = ((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) |
9 | 8 | fveq2d 6911 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
10 | 3, 9 | ifbieq2d 4557 | . . 3 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
11 | itg1add.3 | . . 3 ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) | |
12 | c0ex 11253 | . . . 4 ⊢ 0 ∈ V | |
13 | fvex 6920 | . . . 4 ⊢ (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) ∈ V | |
14 | 12, 13 | ifex 4581 | . . 3 ⊢ if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) ∈ V |
15 | 10, 11, 14 | ovmpoa 7588 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐼𝐵) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
16 | iffalse 4540 | . 2 ⊢ (¬ (𝐴 = 0 ∧ 𝐵 = 0) → if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | |
17 | 15, 16 | sylan9eq 2795 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ifcif 4531 {csn 4631 ◡ccnv 5688 dom cdm 5689 “ cima 5692 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ℝcr 11152 0cc0 11153 volcvol 25512 ∫1citg1 25664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 |
This theorem is referenced by: itg1addlem4 25748 itg1addlem4OLD 25749 itg1addlem5 25750 |
Copyright terms: Public domain | W3C validator |