![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1addlem3 | Structured version Visualization version GIF version |
Description: Lemma for itg1add 25756. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1fadd.1 | ⊢ (𝜑 → 𝐹 ∈ dom ∫1) |
i1fadd.2 | ⊢ (𝜑 → 𝐺 ∈ dom ∫1) |
itg1add.3 | ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
Ref | Expression |
---|---|
itg1addlem3 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . . . 5 ⊢ (𝑖 = 𝐴 → (𝑖 = 0 ↔ 𝐴 = 0)) | |
2 | eqeq1 2744 | . . . . 5 ⊢ (𝑗 = 𝐵 → (𝑗 = 0 ↔ 𝐵 = 0)) | |
3 | 1, 2 | bi2anan9 637 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((𝑖 = 0 ∧ 𝑗 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
4 | sneq 4658 | . . . . . . 7 ⊢ (𝑖 = 𝐴 → {𝑖} = {𝐴}) | |
5 | 4 | imaeq2d 6089 | . . . . . 6 ⊢ (𝑖 = 𝐴 → (◡𝐹 “ {𝑖}) = (◡𝐹 “ {𝐴})) |
6 | sneq 4658 | . . . . . . 7 ⊢ (𝑗 = 𝐵 → {𝑗} = {𝐵}) | |
7 | 6 | imaeq2d 6089 | . . . . . 6 ⊢ (𝑗 = 𝐵 → (◡𝐺 “ {𝑗}) = (◡𝐺 “ {𝐵})) |
8 | 5, 7 | ineqan12d 4243 | . . . . 5 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) = ((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) |
9 | 8 | fveq2d 6924 | . . . 4 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
10 | 3, 9 | ifbieq2d 4574 | . . 3 ⊢ ((𝑖 = 𝐴 ∧ 𝑗 = 𝐵) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
11 | itg1add.3 | . . 3 ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) | |
12 | c0ex 11284 | . . . 4 ⊢ 0 ∈ V | |
13 | fvex 6933 | . . . 4 ⊢ (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))) ∈ V | |
14 | 12, 13 | ifex 4598 | . . 3 ⊢ if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) ∈ V |
15 | 10, 11, 14 | ovmpoa 7605 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐼𝐵) = if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵}))))) |
16 | iffalse 4557 | . 2 ⊢ (¬ (𝐴 = 0 ∧ 𝐵 = 0) → if((𝐴 = 0 ∧ 𝐵 = 0), 0, (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | |
17 | 15, 16 | sylan9eq 2800 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ifcif 4548 {csn 4648 ◡ccnv 5699 dom cdm 5700 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℝcr 11183 0cc0 11184 volcvol 25517 ∫1citg1 25669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: itg1addlem4 25753 itg1addlem4OLD 25754 itg1addlem5 25755 |
Copyright terms: Public domain | W3C validator |