MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisn Structured version   Visualization version   GIF version

Theorem fisn 9467
Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
fisn (fi‘{𝐴}) = {𝐴}

Proof of Theorem fisn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsni 4643 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
2 elsni 4643 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
31, 2ineqan12d 4222 . . . . 5 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) = (𝐴𝐴))
4 inidm 4227 . . . . 5 (𝐴𝐴) = 𝐴
53, 4eqtrdi 2793 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) = 𝐴)
6 vex 3484 . . . . . 6 𝑥 ∈ V
76inex1 5317 . . . . 5 (𝑥𝑦) ∈ V
87elsn 4641 . . . 4 ((𝑥𝑦) ∈ {𝐴} ↔ (𝑥𝑦) = 𝐴)
95, 8sylibr 234 . . 3 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) ∈ {𝐴})
109rgen2 3199 . 2 𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴}
11 snex 5436 . . 3 {𝐴} ∈ V
12 inficl 9465 . . 3 ({𝐴} ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴}))
1311, 12ax-mp 5 . 2 (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴})
1410, 13mpbi 230 1 (fi‘{𝐴}) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cin 3950  {csn 4626  cfv 6561  ficfi 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-en 8986  df-fin 8989  df-fi 9451
This theorem is referenced by:  ordtbas  23200
  Copyright terms: Public domain W3C validator