MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisn Structured version   Visualization version   GIF version

Theorem fisn 8883
Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
fisn (fi‘{𝐴}) = {𝐴}

Proof of Theorem fisn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsni 4576 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
2 elsni 4576 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
31, 2ineqan12d 4189 . . . . 5 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) = (𝐴𝐴))
4 inidm 4193 . . . . 5 (𝐴𝐴) = 𝐴
53, 4syl6eq 2870 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) = 𝐴)
6 vex 3496 . . . . . 6 𝑥 ∈ V
76inex1 5212 . . . . 5 (𝑥𝑦) ∈ V
87elsn 4574 . . . 4 ((𝑥𝑦) ∈ {𝐴} ↔ (𝑥𝑦) = 𝐴)
95, 8sylibr 236 . . 3 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) ∈ {𝐴})
109rgen2 3201 . 2 𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴}
11 snex 5322 . . 3 {𝐴} ∈ V
12 inficl 8881 . . 3 ({𝐴} ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴}))
1311, 12ax-mp 5 . 2 (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴})
1410, 13mpbi 232 1 (fi‘{𝐴}) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1530  wcel 2107  wral 3136  Vcvv 3493  cin 3933  {csn 4559  cfv 6348  ficfi 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-fin 8505  df-fi 8867
This theorem is referenced by:  ordtbas  21792
  Copyright terms: Public domain W3C validator