| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fisn | Structured version Visualization version GIF version | ||
| Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| fisn | ⊢ (fi‘{𝐴}) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4606 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 2 | elsni 4606 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
| 3 | 1, 2 | ineqan12d 4185 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐴)) |
| 4 | inidm 4190 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 5 | 3, 4 | eqtrdi 2780 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 ∩ 𝑦) = 𝐴) |
| 6 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | 6 | inex1 5272 | . . . . 5 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 8 | 7 | elsn 4604 | . . . 4 ⊢ ((𝑥 ∩ 𝑦) ∈ {𝐴} ↔ (𝑥 ∩ 𝑦) = 𝐴) |
| 9 | 5, 8 | sylibr 234 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 ∩ 𝑦) ∈ {𝐴}) |
| 10 | 9 | rgen2 3177 | . 2 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 ∩ 𝑦) ∈ {𝐴} |
| 11 | snex 5391 | . . 3 ⊢ {𝐴} ∈ V | |
| 12 | inficl 9376 | . . 3 ⊢ ({𝐴} ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 ∩ 𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴})) | |
| 13 | 11, 12 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 ∩ 𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴}) |
| 14 | 10, 13 | mpbi 230 | 1 ⊢ (fi‘{𝐴}) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∩ cin 3913 {csn 4589 ‘cfv 6511 ficfi 9361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-2o 8435 df-en 8919 df-fin 8922 df-fi 9362 |
| This theorem is referenced by: ordtbas 23079 |
| Copyright terms: Public domain | W3C validator |