Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fisn | Structured version Visualization version GIF version |
Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
fisn | ⊢ (fi‘{𝐴}) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4578 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
2 | elsni 4578 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
3 | 1, 2 | ineqan12d 4148 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐴)) |
4 | inidm 4152 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | 3, 4 | eqtrdi 2794 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 ∩ 𝑦) = 𝐴) |
6 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 6 | inex1 5241 | . . . . 5 ⊢ (𝑥 ∩ 𝑦) ∈ V |
8 | 7 | elsn 4576 | . . . 4 ⊢ ((𝑥 ∩ 𝑦) ∈ {𝐴} ↔ (𝑥 ∩ 𝑦) = 𝐴) |
9 | 5, 8 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥 ∩ 𝑦) ∈ {𝐴}) |
10 | 9 | rgen2 3120 | . 2 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 ∩ 𝑦) ∈ {𝐴} |
11 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
12 | inficl 9184 | . . 3 ⊢ ({𝐴} ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 ∩ 𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴})) | |
13 | 11, 12 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥 ∩ 𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴}) |
14 | 10, 13 | mpbi 229 | 1 ⊢ (fi‘{𝐴}) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 {csn 4561 ‘cfv 6433 ficfi 9169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-fin 8737 df-fi 9170 |
This theorem is referenced by: ordtbas 22343 |
Copyright terms: Public domain | W3C validator |