MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisn Structured version   Visualization version   GIF version

Theorem fisn 9470
Description: A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
fisn (fi‘{𝐴}) = {𝐴}

Proof of Theorem fisn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsni 4650 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
2 elsni 4650 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
31, 2ineqan12d 4215 . . . . 5 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) = (𝐴𝐴))
4 inidm 4220 . . . . 5 (𝐴𝐴) = 𝐴
53, 4eqtrdi 2782 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) = 𝐴)
6 vex 3466 . . . . . 6 𝑥 ∈ V
76inex1 5322 . . . . 5 (𝑥𝑦) ∈ V
87elsn 4648 . . . 4 ((𝑥𝑦) ∈ {𝐴} ↔ (𝑥𝑦) = 𝐴)
95, 8sylibr 233 . . 3 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑦) ∈ {𝐴})
109rgen2 3188 . 2 𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴}
11 snex 5437 . . 3 {𝐴} ∈ V
12 inficl 9468 . . 3 ({𝐴} ∈ V → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴}))
1311, 12ax-mp 5 . 2 (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑦) ∈ {𝐴} ↔ (fi‘{𝐴}) = {𝐴})
1410, 13mpbi 229 1 (fi‘{𝐴}) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462  cin 3946  {csn 4633  cfv 6554  ficfi 9453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-om 7877  df-1o 8496  df-2o 8497  df-en 8975  df-fin 8978  df-fi 9454
This theorem is referenced by:  ordtbas  23187
  Copyright terms: Public domain W3C validator