| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
| 2 | 1 | fveq1d 6907 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → (𝑓‘𝐼) = ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼)) |
| 3 | | actfunsn.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐴 ⊆ (𝐶 ↑m 𝐵)) |
| 4 | 3 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝐴 ⊆ (𝐶 ↑m 𝐵)) |
| 5 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 6 | 4, 5 | sseldd 3983 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝐶 ↑m 𝐵)) |
| 7 | | elmapfn 8906 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐶 ↑m 𝐵) → 𝑧 Fn 𝐵) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑧 Fn 𝐵) |
| 9 | | actfunsn.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 10 | 9 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝐼 ∈ 𝑉) |
| 11 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑘 ∈ 𝐶) |
| 12 | | fnsng 6617 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐶) → {〈𝐼, 𝑘〉} Fn {𝐼}) |
| 13 | 10, 11, 12 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → {〈𝐼, 𝑘〉} Fn {𝐼}) |
| 14 | | actfunsn.4 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝐼 ∈ 𝐵) |
| 15 | | disjsn 4710 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼 ∈ 𝐵) |
| 16 | 14, 15 | sylibr 234 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∩ {𝐼}) = ∅) |
| 17 | 16 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → (𝐵 ∩ {𝐼}) = ∅) |
| 18 | | snidg 4659 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
| 19 | 10, 18 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝐼 ∈ {𝐼}) |
| 20 | | fvun2 7000 |
. . . . . . . . 9
⊢ ((𝑧 Fn 𝐵 ∧ {〈𝐼, 𝑘〉} Fn {𝐼} ∧ ((𝐵 ∩ {𝐼}) = ∅ ∧ 𝐼 ∈ {𝐼})) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = ({〈𝐼, 𝑘〉}‘𝐼)) |
| 21 | 8, 13, 17, 19, 20 | syl112anc 1375 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = ({〈𝐼, 𝑘〉}‘𝐼)) |
| 22 | | fvsng 7201 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐶) → ({〈𝐼, 𝑘〉}‘𝐼) = 𝑘) |
| 23 | 10, 11, 22 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → ({〈𝐼, 𝑘〉}‘𝐼) = 𝑘) |
| 24 | 21, 23 | eqtrd 2776 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = 𝑘) |
| 25 | 24 | adantr 480 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = 𝑘) |
| 26 | 2, 25 | eqtrd 2776 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → (𝑓‘𝐼) = 𝑘) |
| 27 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) → 𝑓 ∈ ran 𝐹) |
| 28 | | actfunsn.5 |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 ∪ {〈𝐼, 𝑘〉})) |
| 29 | | uneq1 4160 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∪ {〈𝐼, 𝑘〉}) = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
| 30 | 29 | cbvmptv 5254 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ (𝑥 ∪ {〈𝐼, 𝑘〉})) = (𝑧 ∈ 𝐴 ↦ (𝑧 ∪ {〈𝐼, 𝑘〉})) |
| 31 | 28, 30 | eqtri 2764 |
. . . . . . 7
⊢ 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝑧 ∪ {〈𝐼, 𝑘〉})) |
| 32 | | vex 3483 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 33 | | snex 5435 |
. . . . . . . 8
⊢
{〈𝐼, 𝑘〉} ∈
V |
| 34 | 32, 33 | unex 7765 |
. . . . . . 7
⊢ (𝑧 ∪ {〈𝐼, 𝑘〉}) ∈ V |
| 35 | 31, 34 | elrnmpti 5972 |
. . . . . 6
⊢ (𝑓 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝐴 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
| 36 | 27, 35 | sylib 218 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) → ∃𝑧 ∈ 𝐴 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
| 37 | 26, 36 | r19.29a 3161 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) → (𝑓‘𝐼) = 𝑘) |
| 38 | 37 | ralrimiva 3145 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → ∀𝑓 ∈ ran 𝐹(𝑓‘𝐼) = 𝑘) |
| 39 | 38 | ralrimiva 3145 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ 𝐶 ∀𝑓 ∈ ran 𝐹(𝑓‘𝐼) = 𝑘) |
| 40 | | invdisj 5128 |
. 2
⊢
(∀𝑘 ∈
𝐶 ∀𝑓 ∈ ran 𝐹(𝑓‘𝐼) = 𝑘 → Disj 𝑘 ∈ 𝐶 ran 𝐹) |
| 41 | 39, 40 | syl 17 |
1
⊢ (𝜑 → Disj 𝑘 ∈ 𝐶 ran 𝐹) |