Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  actfunsnrndisj Structured version   Visualization version   GIF version

Theorem actfunsnrndisj 32579
Description: The action 𝐹 of extending function from 𝐵 to 𝐶 with new values at point 𝐼 yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Hypotheses
Ref Expression
actfunsn.1 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶m 𝐵))
actfunsn.2 (𝜑𝐶 ∈ V)
actfunsn.3 (𝜑𝐼𝑉)
actfunsn.4 (𝜑 → ¬ 𝐼𝐵)
actfunsn.5 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
Assertion
Ref Expression
actfunsnrndisj (𝜑Disj 𝑘𝐶 ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑘,𝐼,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑘)   𝐵(𝑥,𝑘)   𝐶(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem actfunsnrndisj
Dummy variables 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
21fveq1d 6771 . . . . . 6 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑓𝐼) = ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼))
3 actfunsn.1 . . . . . . . . . . . 12 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶m 𝐵))
43ad2antrr 723 . . . . . . . . . . 11 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝐴 ⊆ (𝐶m 𝐵))
5 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑧𝐴)
64, 5sseldd 3927 . . . . . . . . . 10 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑧 ∈ (𝐶m 𝐵))
7 elmapfn 8634 . . . . . . . . . 10 (𝑧 ∈ (𝐶m 𝐵) → 𝑧 Fn 𝐵)
86, 7syl 17 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑧 Fn 𝐵)
9 actfunsn.3 . . . . . . . . . . 11 (𝜑𝐼𝑉)
109ad3antrrr 727 . . . . . . . . . 10 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝐼𝑉)
11 simpllr 773 . . . . . . . . . 10 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑘𝐶)
12 fnsng 6483 . . . . . . . . . 10 ((𝐼𝑉𝑘𝐶) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
1310, 11, 12syl2anc 584 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
14 actfunsn.4 . . . . . . . . . . 11 (𝜑 → ¬ 𝐼𝐵)
15 disjsn 4653 . . . . . . . . . . 11 ((𝐵 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼𝐵)
1614, 15sylibr 233 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ {𝐼}) = ∅)
1716ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → (𝐵 ∩ {𝐼}) = ∅)
18 snidg 4601 . . . . . . . . . 10 (𝐼𝑉𝐼 ∈ {𝐼})
1910, 18syl 17 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝐼 ∈ {𝐼})
20 fvun2 6855 . . . . . . . . 9 ((𝑧 Fn 𝐵 ∧ {⟨𝐼, 𝑘⟩} Fn {𝐼} ∧ ((𝐵 ∩ {𝐼}) = ∅ ∧ 𝐼 ∈ {𝐼})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = ({⟨𝐼, 𝑘⟩}‘𝐼))
218, 13, 17, 19, 20syl112anc 1373 . . . . . . . 8 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = ({⟨𝐼, 𝑘⟩}‘𝐼))
22 fvsng 7047 . . . . . . . . 9 ((𝐼𝑉𝑘𝐶) → ({⟨𝐼, 𝑘⟩}‘𝐼) = 𝑘)
2310, 11, 22syl2anc 584 . . . . . . . 8 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → ({⟨𝐼, 𝑘⟩}‘𝐼) = 𝑘)
2421, 23eqtrd 2780 . . . . . . 7 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = 𝑘)
2524adantr 481 . . . . . 6 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = 𝑘)
262, 25eqtrd 2780 . . . . 5 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑓𝐼) = 𝑘)
27 simpr 485 . . . . . 6 (((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) → 𝑓 ∈ ran 𝐹)
28 actfunsn.5 . . . . . . . 8 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
29 uneq1 4095 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∪ {⟨𝐼, 𝑘⟩}) = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3029cbvmptv 5192 . . . . . . . 8 (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩})) = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3128, 30eqtri 2768 . . . . . . 7 𝐹 = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
32 vex 3435 . . . . . . . 8 𝑧 ∈ V
33 snex 5358 . . . . . . . 8 {⟨𝐼, 𝑘⟩} ∈ V
3432, 33unex 7588 . . . . . . 7 (𝑧 ∪ {⟨𝐼, 𝑘⟩}) ∈ V
3531, 34elrnmpti 5867 . . . . . 6 (𝑓 ∈ ran 𝐹 ↔ ∃𝑧𝐴 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3627, 35sylib 217 . . . . 5 (((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) → ∃𝑧𝐴 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3726, 36r19.29a 3220 . . . 4 (((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) → (𝑓𝐼) = 𝑘)
3837ralrimiva 3110 . . 3 ((𝜑𝑘𝐶) → ∀𝑓 ∈ ran 𝐹(𝑓𝐼) = 𝑘)
3938ralrimiva 3110 . 2 (𝜑 → ∀𝑘𝐶𝑓 ∈ ran 𝐹(𝑓𝐼) = 𝑘)
40 invdisj 5063 . 2 (∀𝑘𝐶𝑓 ∈ ran 𝐹(𝑓𝐼) = 𝑘Disj 𝑘𝐶 ran 𝐹)
4139, 40syl 17 1 (𝜑Disj 𝑘𝐶 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  Vcvv 3431  cun 3890  cin 3891  wss 3892  c0 4262  {csn 4567  cop 4573  Disj wdisj 5044  cmpt 5162  ran crn 5590   Fn wfn 6426  cfv 6431  (class class class)co 7269  m cmap 8596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-1st 7822  df-2nd 7823  df-map 8598
This theorem is referenced by:  breprexplema  32604
  Copyright terms: Public domain W3C validator