Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
2 | 1 | fveq1d 6771 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → (𝑓‘𝐼) = ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼)) |
3 | | actfunsn.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐴 ⊆ (𝐶 ↑m 𝐵)) |
4 | 3 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝐴 ⊆ (𝐶 ↑m 𝐵)) |
5 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
6 | 4, 5 | sseldd 3927 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝐶 ↑m 𝐵)) |
7 | | elmapfn 8634 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐶 ↑m 𝐵) → 𝑧 Fn 𝐵) |
8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑧 Fn 𝐵) |
9 | | actfunsn.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
10 | 9 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝐼 ∈ 𝑉) |
11 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝑘 ∈ 𝐶) |
12 | | fnsng 6483 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐶) → {〈𝐼, 𝑘〉} Fn {𝐼}) |
13 | 10, 11, 12 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → {〈𝐼, 𝑘〉} Fn {𝐼}) |
14 | | actfunsn.4 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝐼 ∈ 𝐵) |
15 | | disjsn 4653 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼 ∈ 𝐵) |
16 | 14, 15 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∩ {𝐼}) = ∅) |
17 | 16 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → (𝐵 ∩ {𝐼}) = ∅) |
18 | | snidg 4601 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
19 | 10, 18 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → 𝐼 ∈ {𝐼}) |
20 | | fvun2 6855 |
. . . . . . . . 9
⊢ ((𝑧 Fn 𝐵 ∧ {〈𝐼, 𝑘〉} Fn {𝐼} ∧ ((𝐵 ∩ {𝐼}) = ∅ ∧ 𝐼 ∈ {𝐼})) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = ({〈𝐼, 𝑘〉}‘𝐼)) |
21 | 8, 13, 17, 19, 20 | syl112anc 1373 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = ({〈𝐼, 𝑘〉}‘𝐼)) |
22 | | fvsng 7047 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐶) → ({〈𝐼, 𝑘〉}‘𝐼) = 𝑘) |
23 | 10, 11, 22 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → ({〈𝐼, 𝑘〉}‘𝐼) = 𝑘) |
24 | 21, 23 | eqtrd 2780 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = 𝑘) |
25 | 24 | adantr 481 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → ((𝑧 ∪ {〈𝐼, 𝑘〉})‘𝐼) = 𝑘) |
26 | 2, 25 | eqtrd 2780 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) → (𝑓‘𝐼) = 𝑘) |
27 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) → 𝑓 ∈ ran 𝐹) |
28 | | actfunsn.5 |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 ∪ {〈𝐼, 𝑘〉})) |
29 | | uneq1 4095 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∪ {〈𝐼, 𝑘〉}) = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
30 | 29 | cbvmptv 5192 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ (𝑥 ∪ {〈𝐼, 𝑘〉})) = (𝑧 ∈ 𝐴 ↦ (𝑧 ∪ {〈𝐼, 𝑘〉})) |
31 | 28, 30 | eqtri 2768 |
. . . . . . 7
⊢ 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝑧 ∪ {〈𝐼, 𝑘〉})) |
32 | | vex 3435 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
33 | | snex 5358 |
. . . . . . . 8
⊢
{〈𝐼, 𝑘〉} ∈
V |
34 | 32, 33 | unex 7588 |
. . . . . . 7
⊢ (𝑧 ∪ {〈𝐼, 𝑘〉}) ∈ V |
35 | 31, 34 | elrnmpti 5867 |
. . . . . 6
⊢ (𝑓 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝐴 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
36 | 27, 35 | sylib 217 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) → ∃𝑧 ∈ 𝐴 𝑓 = (𝑧 ∪ {〈𝐼, 𝑘〉})) |
37 | 26, 36 | r19.29a 3220 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐶) ∧ 𝑓 ∈ ran 𝐹) → (𝑓‘𝐼) = 𝑘) |
38 | 37 | ralrimiva 3110 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → ∀𝑓 ∈ ran 𝐹(𝑓‘𝐼) = 𝑘) |
39 | 38 | ralrimiva 3110 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ 𝐶 ∀𝑓 ∈ ran 𝐹(𝑓‘𝐼) = 𝑘) |
40 | | invdisj 5063 |
. 2
⊢
(∀𝑘 ∈
𝐶 ∀𝑓 ∈ ran 𝐹(𝑓‘𝐼) = 𝑘 → Disj 𝑘 ∈ 𝐶 ran 𝐹) |
41 | 39, 40 | syl 17 |
1
⊢ (𝜑 → Disj 𝑘 ∈ 𝐶 ran 𝐹) |