Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  actfunsnrndisj Structured version   Visualization version   GIF version

Theorem actfunsnrndisj 34642
Description: The action 𝐹 of extending function from 𝐵 to 𝐶 with new values at point 𝐼 yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021.)
Hypotheses
Ref Expression
actfunsn.1 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶m 𝐵))
actfunsn.2 (𝜑𝐶 ∈ V)
actfunsn.3 (𝜑𝐼𝑉)
actfunsn.4 (𝜑 → ¬ 𝐼𝐵)
actfunsn.5 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
Assertion
Ref Expression
actfunsnrndisj (𝜑Disj 𝑘𝐶 ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑘,𝐼,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑘)   𝐵(𝑥,𝑘)   𝐶(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem actfunsnrndisj
Dummy variables 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
21fveq1d 6883 . . . . . 6 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑓𝐼) = ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼))
3 actfunsn.1 . . . . . . . . . . . 12 ((𝜑𝑘𝐶) → 𝐴 ⊆ (𝐶m 𝐵))
43ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝐴 ⊆ (𝐶m 𝐵))
5 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑧𝐴)
64, 5sseldd 3964 . . . . . . . . . 10 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑧 ∈ (𝐶m 𝐵))
7 elmapfn 8884 . . . . . . . . . 10 (𝑧 ∈ (𝐶m 𝐵) → 𝑧 Fn 𝐵)
86, 7syl 17 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑧 Fn 𝐵)
9 actfunsn.3 . . . . . . . . . . 11 (𝜑𝐼𝑉)
109ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝐼𝑉)
11 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝑘𝐶)
12 fnsng 6593 . . . . . . . . . 10 ((𝐼𝑉𝑘𝐶) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
1310, 11, 12syl2anc 584 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → {⟨𝐼, 𝑘⟩} Fn {𝐼})
14 actfunsn.4 . . . . . . . . . . 11 (𝜑 → ¬ 𝐼𝐵)
15 disjsn 4692 . . . . . . . . . . 11 ((𝐵 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼𝐵)
1614, 15sylibr 234 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ {𝐼}) = ∅)
1716ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → (𝐵 ∩ {𝐼}) = ∅)
18 snidg 4641 . . . . . . . . . 10 (𝐼𝑉𝐼 ∈ {𝐼})
1910, 18syl 17 . . . . . . . . 9 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → 𝐼 ∈ {𝐼})
20 fvun2 6976 . . . . . . . . 9 ((𝑧 Fn 𝐵 ∧ {⟨𝐼, 𝑘⟩} Fn {𝐼} ∧ ((𝐵 ∩ {𝐼}) = ∅ ∧ 𝐼 ∈ {𝐼})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = ({⟨𝐼, 𝑘⟩}‘𝐼))
218, 13, 17, 19, 20syl112anc 1376 . . . . . . . 8 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = ({⟨𝐼, 𝑘⟩}‘𝐼))
22 fvsng 7177 . . . . . . . . 9 ((𝐼𝑉𝑘𝐶) → ({⟨𝐼, 𝑘⟩}‘𝐼) = 𝑘)
2310, 11, 22syl2anc 584 . . . . . . . 8 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → ({⟨𝐼, 𝑘⟩}‘𝐼) = 𝑘)
2421, 23eqtrd 2771 . . . . . . 7 ((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = 𝑘)
2524adantr 480 . . . . . 6 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → ((𝑧 ∪ {⟨𝐼, 𝑘⟩})‘𝐼) = 𝑘)
262, 25eqtrd 2771 . . . . 5 (((((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) ∧ 𝑧𝐴) ∧ 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩})) → (𝑓𝐼) = 𝑘)
27 simpr 484 . . . . . 6 (((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) → 𝑓 ∈ ran 𝐹)
28 actfunsn.5 . . . . . . . 8 𝐹 = (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩}))
29 uneq1 4141 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∪ {⟨𝐼, 𝑘⟩}) = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3029cbvmptv 5230 . . . . . . . 8 (𝑥𝐴 ↦ (𝑥 ∪ {⟨𝐼, 𝑘⟩})) = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3128, 30eqtri 2759 . . . . . . 7 𝐹 = (𝑧𝐴 ↦ (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
32 vex 3468 . . . . . . . 8 𝑧 ∈ V
33 snex 5411 . . . . . . . 8 {⟨𝐼, 𝑘⟩} ∈ V
3432, 33unex 7743 . . . . . . 7 (𝑧 ∪ {⟨𝐼, 𝑘⟩}) ∈ V
3531, 34elrnmpti 5947 . . . . . 6 (𝑓 ∈ ran 𝐹 ↔ ∃𝑧𝐴 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3627, 35sylib 218 . . . . 5 (((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) → ∃𝑧𝐴 𝑓 = (𝑧 ∪ {⟨𝐼, 𝑘⟩}))
3726, 36r19.29a 3149 . . . 4 (((𝜑𝑘𝐶) ∧ 𝑓 ∈ ran 𝐹) → (𝑓𝐼) = 𝑘)
3837ralrimiva 3133 . . 3 ((𝜑𝑘𝐶) → ∀𝑓 ∈ ran 𝐹(𝑓𝐼) = 𝑘)
3938ralrimiva 3133 . 2 (𝜑 → ∀𝑘𝐶𝑓 ∈ ran 𝐹(𝑓𝐼) = 𝑘)
40 invdisj 5110 . 2 (∀𝑘𝐶𝑓 ∈ ran 𝐹(𝑓𝐼) = 𝑘Disj 𝑘𝐶 ran 𝐹)
4139, 40syl 17 1 (𝜑Disj 𝑘𝐶 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  cop 4612  Disj wdisj 5091  cmpt 5206  ran crn 5660   Fn wfn 6531  cfv 6536  (class class class)co 7410  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847
This theorem is referenced by:  breprexplema  34667
  Copyright terms: Public domain W3C validator