| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1addlem1 | Structured version Visualization version GIF version | ||
| Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| itg1addlem.1 | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| itg1addlem.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| itg1addlem.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
| itg1addlem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) |
| itg1addlem.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) |
| Ref | Expression |
|---|---|
| itg1addlem1 | ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1addlem.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | itg1addlem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) | |
| 3 | itg1addlem.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) | |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
| 5 | 4 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
| 6 | itg1addlem.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) | |
| 7 | 6 | adantrr 717 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
| 8 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
| 9 | 7, 8 | sseldd 3930 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ (◡𝐹 “ {𝑘})) |
| 10 | itg1addlem.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 11 | 10 | ffnd 6652 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐹 Fn 𝑋) |
| 13 | fniniseg 6993 | . . . . . . 7 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) | |
| 14 | 12, 13 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) |
| 15 | 9, 14 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘)) |
| 16 | 15 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝑘) |
| 17 | 16 | ralrimivva 3175 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘) |
| 18 | invdisj 5075 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘 → Disj 𝑘 ∈ 𝐴 𝐵) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| 20 | volfiniun 25475 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | |
| 21 | 1, 5, 19, 20 | syl3anc 1373 | 1 ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 {csn 4573 ∪ ciun 4939 Disj wdisj 5056 ◡ccnv 5613 dom cdm 5614 “ cima 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 Fincfn 8869 ℝcr 11005 Σcsu 15593 volcvol 25391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21284 df-met 21285 df-ovol 25392 df-vol 25393 |
| This theorem is referenced by: itg1addlem4 25627 itg1addlem5 25628 |
| Copyright terms: Public domain | W3C validator |