Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg1addlem1 | Structured version Visualization version GIF version |
Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
itg1addlem.1 | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
itg1addlem.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
itg1addlem.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
itg1addlem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) |
itg1addlem.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) |
Ref | Expression |
---|---|
itg1addlem1 | ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1addlem.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | itg1addlem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) | |
3 | itg1addlem.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) | |
4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
5 | 4 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
6 | itg1addlem.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) | |
7 | 6 | adantrr 713 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
8 | simprr 769 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
9 | 7, 8 | sseldd 3918 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ (◡𝐹 “ {𝑘})) |
10 | itg1addlem.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
11 | 10 | ffnd 6585 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐹 Fn 𝑋) |
13 | fniniseg 6919 | . . . . . . 7 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) |
15 | 9, 14 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘)) |
16 | 15 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝑘) |
17 | 16 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘) |
18 | invdisj 5054 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘 → Disj 𝑘 ∈ 𝐴 𝐵) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
20 | volfiniun 24616 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | |
21 | 1, 5, 19, 20 | syl3anc 1369 | 1 ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 {csn 4558 ∪ ciun 4921 Disj wdisj 5035 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 Fincfn 8691 ℝcr 10801 Σcsu 15325 volcvol 24532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 |
This theorem is referenced by: itg1addlem4 24768 itg1addlem4OLD 24769 itg1addlem5 24770 |
Copyright terms: Public domain | W3C validator |