Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem1 Structured version   Visualization version   GIF version

 Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
itg1addlem.3 ((𝜑𝑘𝐴) → 𝐵 ⊆ (𝐹 “ {𝑘}))
itg1addlem.4 ((𝜑𝑘𝐴) → 𝐵 ∈ dom vol)
itg1addlem.5 ((𝜑𝑘𝐴) → (vol‘𝐵) ∈ ℝ)
Assertion
Ref Expression
itg1addlem1 (𝜑 → (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 itg1addlem.2 . 2 (𝜑𝐴 ∈ Fin)
2 itg1addlem.4 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ dom vol)
3 itg1addlem.5 . . . 4 ((𝜑𝑘𝐴) → (vol‘𝐵) ∈ ℝ)
42, 3jca 514 . . 3 ((𝜑𝑘𝐴) → (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
54ralrimiva 3169 . 2 (𝜑 → ∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
6 itg1addlem.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ⊆ (𝐹 “ {𝑘}))
76adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴𝑥𝐵)) → 𝐵 ⊆ (𝐹 “ {𝑘}))
8 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴𝑥𝐵)) → 𝑥𝐵)
97, 8sseldd 3944 . . . . . 6 ((𝜑 ∧ (𝑘𝐴𝑥𝐵)) → 𝑥 ∈ (𝐹 “ {𝑘}))
10 itg1addlem.1 . . . . . . . . 9 (𝜑𝐹:𝑋𝑌)
1110ffnd 6489 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
1211adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴𝑥𝐵)) → 𝐹 Fn 𝑋)
13 fniniseg 6804 . . . . . . 7 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥𝑋 ∧ (𝐹𝑥) = 𝑘)))
1412, 13syl 17 . . . . . 6 ((𝜑 ∧ (𝑘𝐴𝑥𝐵)) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥𝑋 ∧ (𝐹𝑥) = 𝑘)))
159, 14mpbid 234 . . . . 5 ((𝜑 ∧ (𝑘𝐴𝑥𝐵)) → (𝑥𝑋 ∧ (𝐹𝑥) = 𝑘))
1615simprd 498 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑥𝐵)) → (𝐹𝑥) = 𝑘)
1716ralrimivva 3178 . . 3 (𝜑 → ∀𝑘𝐴𝑥𝐵 (𝐹𝑥) = 𝑘)
18 invdisj 5024 . . 3 (∀𝑘𝐴𝑥𝐵 (𝐹𝑥) = 𝑘Disj 𝑘𝐴 𝐵)
1917, 18syl 17 . 2 (𝜑Disj 𝑘𝐴 𝐵)
20 volfiniun 24127 . 2 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘𝐴 𝐵) → (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵))
211, 5, 19, 20syl3anc 1367 1 (𝜑 → (vol‘ 𝑘𝐴 𝐵) = Σ𝑘𝐴 (vol‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537   ∈ wcel 2114  ∀wral 3125   ⊆ wss 3912  {csn 4541  ∪ ciun 4893  Disj wdisj 5005  ◡ccnv 5528  dom cdm 5529   “ cima 5532   Fn wfn 6324  ⟶wf 6325  ‘cfv 6329  Fincfn 8485  ℝcr 10512  Σcsu 15020  volcvol 24043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-inf2 9080  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590  ax-pre-sup 10591 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-disj 5006  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-of 7385  df-om 7557  df-1st 7665  df-2nd 7666  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-1o 8078  df-2o 8079  df-oadd 8082  df-er 8265  df-map 8384  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-div 11274  df-nn 11615  df-2 11677  df-3 11678  df-n0 11875  df-z 11959  df-uz 12221  df-q 12326  df-rp 12367  df-xadd 12485  df-ioo 12719  df-ico 12721  df-icc 12722  df-fz 12875  df-fzo 13016  df-fl 13144  df-seq 13352  df-exp 13413  df-hash 13674  df-cj 14436  df-re 14437  df-im 14438  df-sqrt 14572  df-abs 14573  df-clim 14823  df-sum 15021  df-xmet 20511  df-met 20512  df-ovol 24044  df-vol 24045 This theorem is referenced by:  itg1addlem4  24279  itg1addlem5  24280
 Copyright terms: Public domain W3C validator