![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1addlem1 | Structured version Visualization version GIF version |
Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
itg1addlem.1 | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
itg1addlem.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
itg1addlem.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
itg1addlem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) |
itg1addlem.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) |
Ref | Expression |
---|---|
itg1addlem1 | ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1addlem.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | itg1addlem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) | |
3 | itg1addlem.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) | |
4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
5 | 4 | ralrimiva 3141 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
6 | itg1addlem.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) | |
7 | 6 | adantrr 716 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
8 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
9 | 7, 8 | sseldd 3979 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ (◡𝐹 “ {𝑘})) |
10 | itg1addlem.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
11 | 10 | ffnd 6717 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐹 Fn 𝑋) |
13 | fniniseg 7063 | . . . . . . 7 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) |
15 | 9, 14 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘)) |
16 | 15 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝑘) |
17 | 16 | ralrimivva 3195 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘) |
18 | invdisj 5126 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘 → Disj 𝑘 ∈ 𝐴 𝐵) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
20 | volfiniun 25450 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | |
21 | 1, 5, 19, 20 | syl3anc 1369 | 1 ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ⊆ wss 3944 {csn 4624 ∪ ciun 4991 Disj wdisj 5107 ◡ccnv 5671 dom cdm 5672 “ cima 5675 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 Fincfn 8953 ℝcr 11123 Σcsu 15650 volcvol 25366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-inf 9452 df-oi 9519 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-rp 12993 df-xadd 13111 df-ioo 13346 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-fl 13775 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-sum 15651 df-xmet 21252 df-met 21253 df-ovol 25367 df-vol 25368 |
This theorem is referenced by: itg1addlem4 25602 itg1addlem4OLD 25603 itg1addlem5 25604 |
Copyright terms: Public domain | W3C validator |