| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1addlem1 | Structured version Visualization version GIF version | ||
| Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| itg1addlem.1 | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| itg1addlem.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| itg1addlem.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
| itg1addlem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) |
| itg1addlem.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) |
| Ref | Expression |
|---|---|
| itg1addlem1 | ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1addlem.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | itg1addlem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) | |
| 3 | itg1addlem.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) | |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
| 5 | 4 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ)) |
| 6 | itg1addlem.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) | |
| 7 | 6 | adantrr 717 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) |
| 8 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
| 9 | 7, 8 | sseldd 3936 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ (◡𝐹 “ {𝑘})) |
| 10 | itg1addlem.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 11 | 10 | ffnd 6653 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → 𝐹 Fn 𝑋) |
| 13 | fniniseg 6994 | . . . . . . 7 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) | |
| 14 | 12, 13 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘))) |
| 15 | 9, 14 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) = 𝑘)) |
| 16 | 15 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝑘) |
| 17 | 16 | ralrimivva 3172 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘) |
| 18 | invdisj 5078 | . . 3 ⊢ (∀𝑘 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑘 → Disj 𝑘 ∈ 𝐴 𝐵) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| 20 | volfiniun 25446 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | |
| 21 | 1, 5, 19, 20 | syl3anc 1373 | 1 ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 {csn 4577 ∪ ciun 4941 Disj wdisj 5059 ◡ccnv 5618 dom cdm 5619 “ cima 5622 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 Fincfn 8872 ℝcr 11008 Σcsu 15593 volcvol 25362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xadd 13015 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21254 df-met 21255 df-ovol 25363 df-vol 25364 |
| This theorem is referenced by: itg1addlem4 25598 itg1addlem5 25599 |
| Copyright terms: Public domain | W3C validator |