MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idcn Structured version   Visualization version   GIF version

Theorem idcn 21860
Description: A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
idcn (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))

Proof of Theorem idcn
StepHypRef Expression
1 ssid 3964 . 2 𝐽𝐽
2 ssidcn 21858 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽𝐽))
32anidms 570 . 2 (𝐽 ∈ (TopOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽𝐽))
41, 3mpbiri 261 1 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2114  wss 3908   I cid 5436  cres 5534  cfv 6334  (class class class)co 7140  TopOnctopon 21513   Cn ccn 21827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-map 8395  df-top 21497  df-topon 21514  df-cn 21830
This theorem is referenced by:  resthauslem  21966  kgencn2  22160  txkgen  22255  cnmptid  22264  idhmeo  22376  qtophmeo  22420  pl1cn  31272  rrhre  31336
  Copyright terms: Public domain W3C validator