MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idcn Structured version   Visualization version   GIF version

Theorem idcn 22457
Description: A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
idcn (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))

Proof of Theorem idcn
StepHypRef Expression
1 ssid 3948 . 2 𝐽𝐽
2 ssidcn 22455 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽𝐽))
32anidms 568 . 2 (𝐽 ∈ (TopOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽𝐽))
41, 3mpbiri 258 1 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104  wss 3892   I cid 5499  cres 5602  cfv 6458  (class class class)co 7307  TopOnctopon 22108   Cn ccn 22424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-map 8648  df-top 22092  df-topon 22109  df-cn 22427
This theorem is referenced by:  resthauslem  22563  kgencn2  22757  txkgen  22852  cnmptid  22861  idhmeo  22973  qtophmeo  23017  pl1cn  31954  rrhre  32020
  Copyright terms: Public domain W3C validator