MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idcn Structured version   Visualization version   GIF version

Theorem idcn 22752
Description: A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
idcn (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ( I β†Ύ 𝑋) ∈ (𝐽 Cn 𝐽))

Proof of Theorem idcn
StepHypRef Expression
1 ssid 4003 . 2 𝐽 βŠ† 𝐽
2 ssidcn 22750 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (( I β†Ύ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽 βŠ† 𝐽))
32anidms 567 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (( I β†Ύ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽 βŠ† 𝐽))
41, 3mpbiri 257 1 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ( I β†Ύ 𝑋) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∈ wcel 2106   βŠ† wss 3947   I cid 5572   β†Ύ cres 5677  β€˜cfv 6540  (class class class)co 7405  TopOnctopon 22403   Cn ccn 22719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-top 22387  df-topon 22404  df-cn 22722
This theorem is referenced by:  resthauslem  22858  kgencn2  23052  txkgen  23147  cnmptid  23156  idhmeo  23268  qtophmeo  23312  pl1cn  32923  rrhre  32989
  Copyright terms: Public domain W3C validator