Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idcn | Structured version Visualization version GIF version |
Description: A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
idcn | ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3947 | . 2 ⊢ 𝐽 ⊆ 𝐽 | |
2 | ssidcn 22387 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽 ⊆ 𝐽)) | |
3 | 2 | anidms 566 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽) ↔ 𝐽 ⊆ 𝐽)) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2109 ⊆ wss 3891 I cid 5487 ↾ cres 5590 ‘cfv 6430 (class class class)co 7268 TopOnctopon 22040 Cn ccn 22356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-top 22024 df-topon 22041 df-cn 22359 |
This theorem is referenced by: resthauslem 22495 kgencn2 22689 txkgen 22784 cnmptid 22793 idhmeo 22905 qtophmeo 22949 pl1cn 31884 rrhre 31950 |
Copyright terms: Public domain | W3C validator |