| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7207). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idssxp 6036 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 2 | sqxpexg 7749 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5293 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 I cid 5547 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-res 5666 |
| This theorem is referenced by: ordiso 9530 wdomref 9586 dfac9 10151 relexp0g 15041 relexpsucnnr 15044 ndxarg 17215 idfu2nd 17890 idfu1st 17892 idfucl 17894 funcestrcsetclem4 18155 equivestrcsetc 18164 funcsetcestrclem4 18170 sursubmefmnd 18874 injsubmefmnd 18875 smndex1n0mnd 18890 islinds2 21773 pf1ind 22293 ausgrusgrb 29144 upgrres1lem1 29288 cusgrexilem1 29418 sizusglecusg 29443 pliguhgr 30467 bj-evalid 37094 bj-diagval 37192 poimirlem15 37659 xrnidresex 38425 dib0 41183 dicn0 41211 cdlemn11a 41226 dihord6apre 41275 dihatlat 41353 dihpN 41355 eldioph2lem1 42783 eldioph2lem2 42784 dfrtrcl5 43653 dfrcl2 43698 relexpiidm 43728 ushggricedg 47940 uspgrsprfo 48123 rngcidALTV 48249 ringcidALTV 48283 resipos 48949 idfudiag1bas 49409 idfudiag1 49410 |
| Copyright terms: Public domain | W3C validator |