Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version |
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7091). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idssxp 5956 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
2 | sqxpexg 7605 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
3 | ssexg 5247 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 I cid 5488 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: ordiso 9275 wdomref 9331 dfac9 9892 relexp0g 14733 relexpsucnnr 14736 ndxarg 16897 idfu2nd 17592 idfu1st 17594 idfucl 17596 funcestrcsetclem4 17860 equivestrcsetc 17869 funcsetcestrclem4 17875 sursubmefmnd 18535 injsubmefmnd 18536 smndex1n0mnd 18551 islinds2 21020 pf1ind 21521 ausgrusgrb 27535 upgrres1lem1 27676 cusgrexilem1 27806 sizusglecusg 27830 pliguhgr 28848 bj-evalid 35247 bj-diagval 35345 poimirlem15 35792 xrnidresex 36533 dib0 39178 dicn0 39206 cdlemn11a 39221 dihord6apre 39270 dihatlat 39348 dihpN 39350 eldioph2lem1 40582 eldioph2lem2 40583 dfrtrcl5 41237 dfrcl2 41282 relexpiidm 41312 uspgrsprfo 45310 rngcidALTV 45549 ringcidALTV 45612 |
Copyright terms: Public domain | W3C validator |