Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version |
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7073). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idssxp 5945 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
2 | sqxpexg 7583 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
3 | ssexg 5242 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
4 | 1, 2, 3 | sylancr 586 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 I cid 5479 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: ordiso 9205 wdomref 9261 dfac9 9823 relexp0g 14661 relexpsucnnr 14664 ndxarg 16825 idfu2nd 17508 idfu1st 17510 idfucl 17512 funcestrcsetclem4 17776 equivestrcsetc 17785 funcsetcestrclem4 17791 sursubmefmnd 18450 injsubmefmnd 18451 smndex1n0mnd 18466 islinds2 20930 pf1ind 21431 ausgrusgrb 27438 upgrres1lem1 27579 cusgrexilem1 27709 sizusglecusg 27733 pliguhgr 28749 bj-evalid 35174 bj-diagval 35272 poimirlem15 35719 xrnidresex 36460 dib0 39105 dicn0 39133 cdlemn11a 39148 dihord6apre 39197 dihatlat 39275 dihpN 39277 eldioph2lem1 40498 eldioph2lem2 40499 dfrtrcl5 41126 dfrcl2 41171 relexpiidm 41201 uspgrsprfo 45198 rngcidALTV 45437 ringcidALTV 45500 |
Copyright terms: Public domain | W3C validator |