| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7192). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idssxp 6023 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 2 | sqxpexg 7734 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5281 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 I cid 5535 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-res 5653 |
| This theorem is referenced by: ordiso 9476 wdomref 9532 dfac9 10097 relexp0g 14995 relexpsucnnr 14998 ndxarg 17173 idfu2nd 17846 idfu1st 17848 idfucl 17850 funcestrcsetclem4 18111 equivestrcsetc 18120 funcsetcestrclem4 18126 sursubmefmnd 18830 injsubmefmnd 18831 smndex1n0mnd 18846 islinds2 21729 pf1ind 22249 ausgrusgrb 29099 upgrres1lem1 29243 cusgrexilem1 29373 sizusglecusg 29398 pliguhgr 30422 bj-evalid 37071 bj-diagval 37169 poimirlem15 37636 xrnidresex 38400 dib0 41165 dicn0 41193 cdlemn11a 41208 dihord6apre 41257 dihatlat 41335 dihpN 41337 eldioph2lem1 42755 eldioph2lem2 42756 dfrtrcl5 43625 dfrcl2 43670 relexpiidm 43700 ushggricedg 47931 uspgrsprfo 48140 rngcidALTV 48266 ringcidALTV 48300 resipos 48967 cofidvala 49109 cofidval 49112 opf2fval 49398 fucoppc 49403 idfudiag1bas 49517 idfudiag1 49518 |
| Copyright terms: Public domain | W3C validator |