MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiexg Structured version   Visualization version   GIF version

Theorem resiexg 7761
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7091). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
resiexg (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)

Proof of Theorem resiexg
StepHypRef Expression
1 idssxp 5956 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
2 sqxpexg 7605 . 2 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
3 ssexg 5247 . 2 ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V)
41, 2, 3sylancr 587 1 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  wss 3887   I cid 5488   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  ordiso  9275  wdomref  9331  dfac9  9892  relexp0g  14733  relexpsucnnr  14736  ndxarg  16897  idfu2nd  17592  idfu1st  17594  idfucl  17596  funcestrcsetclem4  17860  equivestrcsetc  17869  funcsetcestrclem4  17875  sursubmefmnd  18535  injsubmefmnd  18536  smndex1n0mnd  18551  islinds2  21020  pf1ind  21521  ausgrusgrb  27535  upgrres1lem1  27676  cusgrexilem1  27806  sizusglecusg  27830  pliguhgr  28848  bj-evalid  35247  bj-diagval  35345  poimirlem15  35792  xrnidresex  36533  dib0  39178  dicn0  39206  cdlemn11a  39221  dihord6apre  39270  dihatlat  39348  dihpN  39350  eldioph2lem1  40582  eldioph2lem2  40583  dfrtrcl5  41237  dfrcl2  41282  relexpiidm  41312  uspgrsprfo  45310  rngcidALTV  45549  ringcidALTV  45612
  Copyright terms: Public domain W3C validator