![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version |
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7252). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idssxp 6078 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
2 | sqxpexg 7790 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
3 | ssexg 5341 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
4 | 1, 2, 3 | sylancr 586 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 I cid 5592 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: ordiso 9585 wdomref 9641 dfac9 10206 relexp0g 15071 relexpsucnnr 15074 ndxarg 17243 idfu2nd 17941 idfu1st 17943 idfucl 17945 funcestrcsetclem4 18212 equivestrcsetc 18221 funcsetcestrclem4 18227 sursubmefmnd 18931 injsubmefmnd 18932 smndex1n0mnd 18947 islinds2 21856 pf1ind 22380 ausgrusgrb 29200 upgrres1lem1 29344 cusgrexilem1 29474 sizusglecusg 29499 pliguhgr 30518 bj-evalid 37042 bj-diagval 37140 poimirlem15 37595 xrnidresex 38363 dib0 41121 dicn0 41149 cdlemn11a 41164 dihord6apre 41213 dihatlat 41291 dihpN 41293 eldioph2lem1 42716 eldioph2lem2 42717 dfrtrcl5 43591 dfrcl2 43636 relexpiidm 43666 ushggricedg 47780 uspgrsprfo 47871 rngcidALTV 47997 ringcidALTV 48031 |
Copyright terms: Public domain | W3C validator |