| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7171). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idssxp 6009 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 2 | sqxpexg 7711 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5273 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 I cid 5525 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: ordiso 9445 wdomref 9501 dfac9 10068 relexp0g 14965 relexpsucnnr 14968 ndxarg 17143 idfu2nd 17820 idfu1st 17822 idfucl 17824 funcestrcsetclem4 18085 equivestrcsetc 18094 funcsetcestrclem4 18100 sursubmefmnd 18806 injsubmefmnd 18807 smndex1n0mnd 18822 islinds2 21756 pf1ind 22276 ausgrusgrb 29146 upgrres1lem1 29290 cusgrexilem1 29420 sizusglecusg 29445 pliguhgr 30466 bj-evalid 37058 bj-diagval 37156 poimirlem15 37623 xrnidresex 38387 dib0 41152 dicn0 41180 cdlemn11a 41195 dihord6apre 41244 dihatlat 41322 dihpN 41324 eldioph2lem1 42742 eldioph2lem2 42743 dfrtrcl5 43612 dfrcl2 43657 relexpiidm 43687 ushggricedg 47921 uspgrsprfo 48130 rngcidALTV 48256 ringcidALTV 48290 resipos 48957 cofidvala 49099 cofidval 49102 opf2fval 49388 fucoppc 49393 idfudiag1bas 49507 idfudiag1 49508 |
| Copyright terms: Public domain | W3C validator |