| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7149). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idssxp 5997 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 2 | sqxpexg 7688 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5259 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 I cid 5508 × cxp 5612 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-res 5626 |
| This theorem is referenced by: ordiso 9402 wdomref 9458 dfac9 10028 relexp0g 14929 relexpsucnnr 14932 ndxarg 17107 idfu2nd 17784 idfu1st 17786 idfucl 17788 funcestrcsetclem4 18049 equivestrcsetc 18058 funcsetcestrclem4 18064 sursubmefmnd 18804 injsubmefmnd 18805 smndex1n0mnd 18820 islinds2 21750 pf1ind 22270 ausgrusgrb 29143 upgrres1lem1 29287 cusgrexilem1 29417 sizusglecusg 29442 pliguhgr 30466 bj-evalid 37120 bj-diagval 37218 poimirlem15 37674 xrnidresex 38453 dib0 41262 dicn0 41290 cdlemn11a 41305 dihord6apre 41354 dihatlat 41432 dihpN 41434 eldioph2lem1 42852 eldioph2lem2 42853 dfrtrcl5 43721 dfrcl2 43766 relexpiidm 43796 ushggricedg 48026 uspgrsprfo 48247 rngcidALTV 48373 ringcidALTV 48407 resipos 49074 cofidvala 49216 cofidval 49219 opf2fval 49505 fucoppc 49510 idfudiag1bas 49624 idfudiag1 49625 |
| Copyright terms: Public domain | W3C validator |