MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiexg Structured version   Visualization version   GIF version

Theorem resiexg 7842
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7149). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
resiexg (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)

Proof of Theorem resiexg
StepHypRef Expression
1 idssxp 5997 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
2 sqxpexg 7688 . 2 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
3 ssexg 5259 . 2 ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V)
41, 2, 3sylancr 587 1 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  wss 3897   I cid 5508   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-res 5626
This theorem is referenced by:  ordiso  9402  wdomref  9458  dfac9  10028  relexp0g  14929  relexpsucnnr  14932  ndxarg  17107  idfu2nd  17784  idfu1st  17786  idfucl  17788  funcestrcsetclem4  18049  equivestrcsetc  18058  funcsetcestrclem4  18064  sursubmefmnd  18804  injsubmefmnd  18805  smndex1n0mnd  18820  islinds2  21750  pf1ind  22270  ausgrusgrb  29143  upgrres1lem1  29287  cusgrexilem1  29417  sizusglecusg  29442  pliguhgr  30466  bj-evalid  37120  bj-diagval  37218  poimirlem15  37674  xrnidresex  38453  dib0  41262  dicn0  41290  cdlemn11a  41305  dihord6apre  41354  dihatlat  41432  dihpN  41434  eldioph2lem1  42852  eldioph2lem2  42853  dfrtrcl5  43721  dfrcl2  43766  relexpiidm  43796  ushggricedg  48026  uspgrsprfo  48247  rngcidALTV  48373  ringcidALTV  48407  resipos  49074  cofidvala  49216  cofidval  49219  opf2fval  49505  fucoppc  49510  idfudiag1bas  49624  idfudiag1  49625
  Copyright terms: Public domain W3C validator