| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7151). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idssxp 6000 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 2 | sqxpexg 7691 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5262 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 I cid 5513 × cxp 5617 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-res 5631 |
| This theorem is referenced by: ordiso 9408 wdomref 9464 dfac9 10031 relexp0g 14929 relexpsucnnr 14932 ndxarg 17107 idfu2nd 17784 idfu1st 17786 idfucl 17788 funcestrcsetclem4 18049 equivestrcsetc 18058 funcsetcestrclem4 18064 sursubmefmnd 18770 injsubmefmnd 18771 smndex1n0mnd 18786 islinds2 21720 pf1ind 22240 ausgrusgrb 29114 upgrres1lem1 29258 cusgrexilem1 29388 sizusglecusg 29413 pliguhgr 30434 bj-evalid 37070 bj-diagval 37168 poimirlem15 37635 xrnidresex 38399 dib0 41163 dicn0 41191 cdlemn11a 41206 dihord6apre 41255 dihatlat 41333 dihpN 41335 eldioph2lem1 42753 eldioph2lem2 42754 dfrtrcl5 43622 dfrcl2 43667 relexpiidm 43697 ushggricedg 47931 uspgrsprfo 48152 rngcidALTV 48278 ringcidALTV 48312 resipos 48979 cofidvala 49121 cofidval 49124 opf2fval 49410 fucoppc 49415 idfudiag1bas 49529 idfudiag1 49530 |
| Copyright terms: Public domain | W3C validator |