| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexg | Structured version Visualization version GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7171). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idssxp 6009 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 2 | sqxpexg 7711 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
| 3 | ssexg 5273 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 I cid 5525 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: ordiso 9445 wdomref 9501 dfac9 10066 relexp0g 14964 relexpsucnnr 14967 ndxarg 17142 idfu2nd 17819 idfu1st 17821 idfucl 17823 funcestrcsetclem4 18084 equivestrcsetc 18093 funcsetcestrclem4 18099 sursubmefmnd 18805 injsubmefmnd 18806 smndex1n0mnd 18821 islinds2 21755 pf1ind 22275 ausgrusgrb 29145 upgrres1lem1 29289 cusgrexilem1 29419 sizusglecusg 29444 pliguhgr 30465 bj-evalid 37057 bj-diagval 37155 poimirlem15 37622 xrnidresex 38386 dib0 41151 dicn0 41179 cdlemn11a 41194 dihord6apre 41243 dihatlat 41321 dihpN 41323 eldioph2lem1 42741 eldioph2lem2 42742 dfrtrcl5 43611 dfrcl2 43656 relexpiidm 43686 ushggricedg 47920 uspgrsprfo 48129 rngcidALTV 48255 ringcidALTV 48289 resipos 48956 cofidvala 49098 cofidval 49101 opf2fval 49387 fucoppc 49392 idfudiag1bas 49506 idfudiag1 49507 |
| Copyright terms: Public domain | W3C validator |