MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnpropd Structured version   Visualization version   GIF version

Theorem cmnpropd 19311
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablpropd.1 (𝜑𝐵 = (Base‘𝐾))
ablpropd.2 (𝜑𝐵 = (Base‘𝐿))
ablpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
cmnpropd (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem cmnpropd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 ablpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 ablpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
41, 2, 3mndpropd 18325 . . 3 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
53oveqrspc2v 7282 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
63oveqrspc2v 7282 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
76ancom2s 646 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑣(+g𝐾)𝑢) = (𝑣(+g𝐿)𝑢))
85, 7eqeq12d 2754 . . . . 5 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
982ralbidva 3121 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
101raleqdv 3339 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
111, 10raleqbidv 3327 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
122raleqdv 3339 . . . . 5 (𝜑 → (∀𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
132, 12raleqbidv 3327 . . . 4 (𝜑 → (∀𝑢𝐵𝑣𝐵 (𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
149, 11, 133bitr3d 308 . . 3 (𝜑 → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
154, 14anbi12d 630 . 2 (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢))))
16 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2738 . . 3 (+g𝐾) = (+g𝐾)
1816, 17iscmn 19309 . 2 (𝐾 ∈ CMnd ↔ (𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g𝐾)𝑣) = (𝑣(+g𝐾)𝑢)))
19 eqid 2738 . . 3 (Base‘𝐿) = (Base‘𝐿)
20 eqid 2738 . . 3 (+g𝐿) = (+g𝐿)
2119, 20iscmn 19309 . 2 (𝐿 ∈ CMnd ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g𝐿)𝑣) = (𝑣(+g𝐿)𝑢)))
2215, 18, 213bitr4g 313 1 (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Mndcmnd 18300  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-cmn 19303
This theorem is referenced by:  ablpropd  19312  crngpropd  19737  prdscrngd  19767  resvcmn  31444
  Copyright terms: Public domain W3C validator