| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ablpropd.1 | . . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | 
| 2 |  | ablpropd.2 | . . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | 
| 3 |  | ablpropd.3 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 4 | 1, 2, 3 | mndpropd 18773 | . . 3
⊢ (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) | 
| 5 | 3 | oveqrspc2v 7459 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) | 
| 6 | 3 | oveqrspc2v 7459 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑢) = (𝑣(+g‘𝐿)𝑢)) | 
| 7 | 6 | ancom2s 650 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑢) = (𝑣(+g‘𝐿)𝑢)) | 
| 8 | 5, 7 | eqeq12d 2752 | . . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) | 
| 9 | 8 | 2ralbidva 3218 | . . . 4
⊢ (𝜑 → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) | 
| 10 | 1 | raleqdv 3325 | . . . . 5
⊢ (𝜑 → (∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢))) | 
| 11 | 1, 10 | raleqbidv 3345 | . . . 4
⊢ (𝜑 → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢))) | 
| 12 | 2 | raleqdv 3325 | . . . . 5
⊢ (𝜑 → (∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢) ↔ ∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) | 
| 13 | 2, 12 | raleqbidv 3345 | . . . 4
⊢ (𝜑 → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) | 
| 14 | 9, 11, 13 | 3bitr3d 309 | . . 3
⊢ (𝜑 → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) | 
| 15 | 4, 14 | anbi12d 632 | . 2
⊢ (𝜑 → ((𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢)) ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢)))) | 
| 16 |  | eqid 2736 | . . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 17 |  | eqid 2736 | . . 3
⊢
(+g‘𝐾) = (+g‘𝐾) | 
| 18 | 16, 17 | iscmn 19808 | . 2
⊢ (𝐾 ∈ CMnd ↔ (𝐾 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)(𝑢(+g‘𝐾)𝑣) = (𝑣(+g‘𝐾)𝑢))) | 
| 19 |  | eqid 2736 | . . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 20 |  | eqid 2736 | . . 3
⊢
(+g‘𝐿) = (+g‘𝐿) | 
| 21 | 19, 20 | iscmn 19808 | . 2
⊢ (𝐿 ∈ CMnd ↔ (𝐿 ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)(𝑢(+g‘𝐿)𝑣) = (𝑣(+g‘𝐿)𝑢))) | 
| 22 | 15, 18, 21 | 3bitr4g 314 | 1
⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |