MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invghm Structured version   Visualization version   GIF version

Theorem invghm 19350
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b 𝐵 = (Base‘𝐺)
invghm.m 𝐼 = (invg𝐺)
Assertion
Ref Expression
invghm (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem invghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2738 . . 3 (+g𝐺) = (+g𝐺)
3 ablgrp 19306 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
4 invghm.m . . . . 5 𝐼 = (invg𝐺)
51, 4grpinvf 18541 . . . 4 (𝐺 ∈ Grp → 𝐼:𝐵𝐵)
63, 5syl 17 . . 3 (𝐺 ∈ Abel → 𝐼:𝐵𝐵)
71, 2, 4ablinvadd 19326 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥𝐵𝑦𝐵) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
873expb 1118 . . 3 ((𝐺 ∈ Abel ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
91, 1, 2, 2, 3, 3, 6, 8isghmd 18758 . 2 (𝐺 ∈ Abel → 𝐼 ∈ (𝐺 GrpHom 𝐺))
10 ghmgrp1 18751 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Grp)
1110adantr 480 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
12 simprr 769 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
13 simprl 767 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
141, 2, 4grpinvadd 18568 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1511, 12, 13, 14syl3anc 1369 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1615fveq2d 6760 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))))
17 simpl 482 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ (𝐺 GrpHom 𝐺))
181, 4grpinvcl 18542 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼𝑥) ∈ 𝐵)
1911, 13, 18syl2anc 583 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑥) ∈ 𝐵)
201, 4grpinvcl 18542 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼𝑦) ∈ 𝐵)
2111, 12, 20syl2anc 583 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑦) ∈ 𝐵)
221, 2, 2ghmlin 18754 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝐼𝑥) ∈ 𝐵 ∧ (𝐼𝑦) ∈ 𝐵) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
2317, 19, 21, 22syl3anc 1369 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
241, 4grpinvinv 18557 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼‘(𝐼𝑥)) = 𝑥)
2511, 13, 24syl2anc 583 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑥)) = 𝑥)
261, 4grpinvinv 18557 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼‘(𝐼𝑦)) = 𝑦)
2711, 12, 26syl2anc 583 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑦)) = 𝑦)
2825, 27oveq12d 7273 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))) = (𝑥(+g𝐺)𝑦))
2916, 23, 283eqtrd 2782 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑥(+g𝐺)𝑦))
301, 2grpcl 18500 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
3111, 12, 13, 30syl3anc 1369 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
321, 4grpinvinv 18557 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑥) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3311, 31, 32syl2anc 583 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3429, 33eqtr3d 2780 . . . 4 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
3534ralrimivva 3114 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
361, 2isabl2 19310 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
3710, 35, 36sylanbrc 582 . 2 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Abel)
389, 37impbii 208 1 (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493   GrpHom cghm 18746  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cmn 19303  df-abl 19304
This theorem is referenced by:  gsuminv  19462  invlmhm  20219  tsmsinv  23207
  Copyright terms: Public domain W3C validator