Step | Hyp | Ref
| Expression |
1 | | invghm.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
2 | | eqid 2738 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
3 | | ablgrp 19306 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
4 | | invghm.m |
. . . . 5
⊢ 𝐼 = (invg‘𝐺) |
5 | 1, 4 | grpinvf 18541 |
. . . 4
⊢ (𝐺 ∈ Grp → 𝐼:𝐵⟶𝐵) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐼:𝐵⟶𝐵) |
7 | 1, 2, 4 | ablinvadd 19326 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐼‘(𝑥(+g‘𝐺)𝑦)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
8 | 7 | 3expb 1118 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝑥(+g‘𝐺)𝑦)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
9 | 1, 1, 2, 2, 3, 3, 6, 8 | isghmd 18758 |
. 2
⊢ (𝐺 ∈ Abel → 𝐼 ∈ (𝐺 GrpHom 𝐺)) |
10 | | ghmgrp1 18751 |
. . 3
⊢ (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Grp) |
11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) |
12 | | simprr 769 |
. . . . . . . 8
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
13 | | simprl 767 |
. . . . . . . 8
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
14 | 1, 2, 4 | grpinvadd 18568 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐼‘(𝑦(+g‘𝐺)𝑥)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
15 | 11, 12, 13, 14 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝑦(+g‘𝐺)𝑥)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
16 | 15 | fveq2d 6760 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝐼‘((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦)))) |
17 | | simpl 482 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ (𝐺 GrpHom 𝐺)) |
18 | 1, 4 | grpinvcl 18542 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ 𝐵) |
19 | 11, 13, 18 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘𝑥) ∈ 𝐵) |
20 | 1, 4 | grpinvcl 18542 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝐼‘𝑦) ∈ 𝐵) |
21 | 11, 12, 20 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘𝑦) ∈ 𝐵) |
22 | 1, 2, 2 | ghmlin 18754 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝐼‘𝑥) ∈ 𝐵 ∧ (𝐼‘𝑦) ∈ 𝐵) → (𝐼‘((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) = ((𝐼‘(𝐼‘𝑥))(+g‘𝐺)(𝐼‘(𝐼‘𝑦)))) |
23 | 17, 19, 21, 22 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) = ((𝐼‘(𝐼‘𝑥))(+g‘𝐺)(𝐼‘(𝐼‘𝑦)))) |
24 | 1, 4 | grpinvinv 18557 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝐼‘(𝐼‘𝑥)) = 𝑥) |
25 | 11, 13, 24 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘𝑥)) = 𝑥) |
26 | 1, 4 | grpinvinv 18557 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝐼‘(𝐼‘𝑦)) = 𝑦) |
27 | 11, 12, 26 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘𝑦)) = 𝑦) |
28 | 25, 27 | oveq12d 7273 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐼‘(𝐼‘𝑥))(+g‘𝐺)(𝐼‘(𝐼‘𝑦))) = (𝑥(+g‘𝐺)𝑦)) |
29 | 16, 23, 28 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝑥(+g‘𝐺)𝑦)) |
30 | 1, 2 | grpcl 18500 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑥) ∈ 𝐵) |
31 | 11, 12, 13, 30 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑥) ∈ 𝐵) |
32 | 1, 4 | grpinvinv 18557 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑦(+g‘𝐺)𝑥) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝑦(+g‘𝐺)𝑥)) |
33 | 11, 31, 32 | syl2anc 583 |
. . . . 5
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝑦(+g‘𝐺)𝑥)) |
34 | 29, 33 | eqtr3d 2780 |
. . . 4
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
35 | 34 | ralrimivva 3114 |
. . 3
⊢ (𝐼 ∈ (𝐺 GrpHom 𝐺) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
36 | 1, 2 | isabl2 19310 |
. . 3
⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
37 | 10, 35, 36 | sylanbrc 582 |
. 2
⊢ (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Abel) |
38 | 9, 37 | impbii 208 |
1
⊢ (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺)) |