MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abl1 Structured version   Visualization version   GIF version

Theorem abl1 19467
Description: The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
abl1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
abl1 (𝐼𝑉𝑀 ∈ Abel)

Proof of Theorem abl1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abl1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 18682 . 2 (𝐼𝑉𝑀 ∈ Grp)
3 eqidd 2739 . . 3 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
4 oveq1 7282 . . . . . . 7 (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏))
5 oveq2 7283 . . . . . . 7 (𝑎 = 𝐼 → (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
64, 5eqeq12d 2754 . . . . . 6 (𝑎 = 𝐼 → ((𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
76ralbidv 3112 . . . . 5 (𝑎 = 𝐼 → (∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
87ralsng 4609 . . . 4 (𝐼𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
9 oveq2 7283 . . . . . 6 (𝑏 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
10 oveq1 7282 . . . . . 6 (𝑏 = 𝐼 → (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
119, 10eqeq12d 2754 . . . . 5 (𝑏 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
1211ralsng 4609 . . . 4 (𝐼𝑉 → (∀𝑏 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
138, 12bitrd 278 . . 3 (𝐼𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
143, 13mpbird 256 . 2 (𝐼𝑉 → ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎))
15 snex 5354 . . . 4 {𝐼} ∈ V
161grpbase 16996 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
1715, 16ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
18 snex 5354 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
191grpplusg 16998 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2018, 19ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
2117, 20isabl2 19395 . 2 (𝑀 ∈ Abel ↔ (𝑀 ∈ Grp ∧ ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎)))
222, 14, 21sylanbrc 583 1 (𝐼𝑉𝑀 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  {csn 4561  {cpr 4563  cop 4567  cfv 6433  (class class class)co 7275  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-cmn 19388  df-abl 19389
This theorem is referenced by:  abln0  19468
  Copyright terms: Public domain W3C validator