MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abl1 Structured version   Visualization version   GIF version

Theorem abl1 19780
Description: The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
abl1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
abl1 (𝐼𝑉𝑀 ∈ Abel)

Proof of Theorem abl1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abl1.m . . 3 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 18962 . 2 (𝐼𝑉𝑀 ∈ Grp)
3 eqidd 2734 . . 3 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
4 oveq1 7359 . . . . . . 7 (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏))
5 oveq2 7360 . . . . . . 7 (𝑎 = 𝐼 → (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
64, 5eqeq12d 2749 . . . . . 6 (𝑎 = 𝐼 → ((𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
76ralbidv 3156 . . . . 5 (𝑎 = 𝐼 → (∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
87ralsng 4627 . . . 4 (𝐼𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
9 oveq2 7360 . . . . . 6 (𝑏 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
10 oveq1 7359 . . . . . 6 (𝑏 = 𝐼 → (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
119, 10eqeq12d 2749 . . . . 5 (𝑏 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
1211ralsng 4627 . . . 4 (𝐼𝑉 → (∀𝑏 ∈ {𝐼} (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
138, 12bitrd 279 . . 3 (𝐼𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼)))
143, 13mpbird 257 . 2 (𝐼𝑉 → ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎))
15 snex 5376 . . . 4 {𝐼} ∈ V
161grpbase 17195 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
1715, 16ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
18 snex 5376 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
191grpplusg 17196 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
2018, 19ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
2117, 20isabl2 19704 . 2 (𝑀 ∈ Abel ↔ (𝑀 ∈ Grp ∧ ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑏) = (𝑏{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎)))
222, 14, 21sylanbrc 583 1 (𝐼𝑉𝑀 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  {csn 4575  {cpr 4577  cop 4581  cfv 6486  (class class class)co 7352  ndxcnx 17106  Basecbs 17122  +gcplusg 17163  Grpcgrp 18848  Abelcabl 19695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-cmn 19696  df-abl 19697
This theorem is referenced by:  abln0  19781
  Copyright terms: Public domain W3C validator