Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abl1 | Structured version Visualization version GIF version |
Description: The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
abl1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
abl1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abl1.m | . . 3 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
2 | 1 | grp1 18263 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
3 | eqidd 2760 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
4 | oveq1 7155 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏)) | |
5 | oveq2 7156 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
6 | 4, 5 | eqeq12d 2775 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
7 | 6 | ralbidv 3127 | . . . . 5 ⊢ (𝑎 = 𝐼 → (∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
8 | 7 | ralsng 4568 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
9 | oveq2 7156 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
10 | oveq1 7155 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
11 | 9, 10 | eqeq12d 2775 | . . . . 5 ⊢ (𝑏 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
12 | 11 | ralsng 4568 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
13 | 8, 12 | bitrd 282 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
14 | 3, 13 | mpbird 260 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎)) |
15 | snex 5298 | . . . 4 ⊢ {𝐼} ∈ V | |
16 | 1 | grpbase 16658 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
18 | snex 5298 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
19 | 1 | grpplusg 16659 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
21 | 17, 20 | isabl2 18972 | . 2 ⊢ (𝑀 ∈ Abel ↔ (𝑀 ∈ Grp ∧ ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎))) |
22 | 2, 14, 21 | sylanbrc 587 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∀wral 3071 Vcvv 3410 {csn 4520 {cpr 4522 〈cop 4526 ‘cfv 6333 (class class class)co 7148 ndxcnx 16528 Basecbs 16531 +gcplusg 16613 Grpcgrp 18159 Abelcabl 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-oadd 8114 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-2 11727 df-n0 11925 df-z 12011 df-uz 12273 df-fz 12930 df-struct 16533 df-ndx 16534 df-slot 16535 df-base 16537 df-plusg 16626 df-0g 16763 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-grp 18162 df-cmn 18965 df-abl 18966 |
This theorem is referenced by: abln0 19045 |
Copyright terms: Public domain | W3C validator |