![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abl1 | Structured version Visualization version GIF version |
Description: The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
abl1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
abl1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abl1.m | . . 3 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
2 | 1 | grp1 17967 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
3 | eqidd 2798 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
4 | oveq1 7030 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏)) | |
5 | oveq2 7031 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
6 | 4, 5 | eqeq12d 2812 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
7 | 6 | ralbidv 3166 | . . . . 5 ⊢ (𝑎 = 𝐼 → (∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
8 | 7 | ralsng 4526 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
9 | oveq2 7031 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
10 | oveq1 7030 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
11 | 9, 10 | eqeq12d 2812 | . . . . 5 ⊢ (𝑏 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
12 | 11 | ralsng 4526 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
13 | 8, 12 | bitrd 280 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
14 | 3, 13 | mpbird 258 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎)) |
15 | snex 5230 | . . . 4 ⊢ {𝐼} ∈ V | |
16 | 1 | grpbase 16443 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
18 | snex 5230 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
19 | 1 | grpplusg 16444 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
21 | 17, 20 | isabl2 18645 | . 2 ⊢ (𝑀 ∈ Abel ↔ (𝑀 ∈ Grp ∧ ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎))) |
22 | 2, 14, 21 | sylanbrc 583 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 ∀wral 3107 Vcvv 3440 {csn 4478 {cpr 4480 〈cop 4484 ‘cfv 6232 (class class class)co 7023 ndxcnx 16313 Basecbs 16316 +gcplusg 16398 Grpcgrp 17865 Abelcabl 18638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-plusg 16411 df-0g 16548 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-grp 17868 df-cmn 18639 df-abl 18640 |
This theorem is referenced by: abln0 18714 |
Copyright terms: Public domain | W3C validator |