Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abl1 | Structured version Visualization version GIF version |
Description: The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
abl1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
abl1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abl1.m | . . 3 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
2 | 1 | grp1 18770 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
3 | eqidd 2737 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
4 | oveq1 7336 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏)) | |
5 | oveq2 7337 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
6 | 4, 5 | eqeq12d 2752 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
7 | 6 | ralbidv 3170 | . . . . 5 ⊢ (𝑎 = 𝐼 → (∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
8 | 7 | ralsng 4620 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
9 | oveq2 7337 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
10 | oveq1 7336 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
11 | 9, 10 | eqeq12d 2752 | . . . . 5 ⊢ (𝑏 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
12 | 11 | ralsng 4620 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
13 | 8, 12 | bitrd 278 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
14 | 3, 13 | mpbird 256 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎)) |
15 | snex 5373 | . . . 4 ⊢ {𝐼} ∈ V | |
16 | 1 | grpbase 17085 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
18 | snex 5373 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
19 | 1 | grpplusg 17087 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
21 | 17, 20 | isabl2 19482 | . 2 ⊢ (𝑀 ∈ Abel ↔ (𝑀 ∈ Grp ∧ ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎))) |
22 | 2, 14, 21 | sylanbrc 583 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 {csn 4572 {cpr 4574 〈cop 4578 ‘cfv 6473 (class class class)co 7329 ndxcnx 16983 Basecbs 17001 +gcplusg 17051 Grpcgrp 18665 Abelcabl 19474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-struct 16937 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-0g 17241 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-grp 18668 df-cmn 19475 df-abl 19476 |
This theorem is referenced by: abln0 19555 |
Copyright terms: Public domain | W3C validator |