| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abl1 | Structured version Visualization version GIF version | ||
| Description: The (smallest) structure representing a trivial abelian group. (Contributed by AV, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| abl1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| abl1 | ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl1.m | . . 3 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 2 | 1 | grp1 19035 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
| 3 | eqidd 2737 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 4 | oveq1 7417 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏)) | |
| 5 | oveq2 7418 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 6 | 4, 5 | eqeq12d 2752 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
| 7 | 6 | ralbidv 3164 | . . . . 5 ⊢ (𝑎 = 𝐼 → (∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
| 8 | 7 | ralsng 4656 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ ∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
| 9 | oveq2 7418 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 10 | oveq1 7417 | . . . . . 6 ⊢ (𝑏 = 𝐼 → (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 11 | 9, 10 | eqeq12d 2752 | . . . . 5 ⊢ (𝑏 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
| 12 | 11 | ralsng 4656 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (∀𝑏 ∈ {𝐼} (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
| 13 | 8, 12 | bitrd 279 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼))) |
| 14 | 3, 13 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎)) |
| 15 | snex 5411 | . . . 4 ⊢ {𝐼} ∈ V | |
| 16 | 1 | grpbase 17308 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
| 18 | snex 5411 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
| 19 | 1 | grpplusg 17309 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
| 21 | 17, 20 | isabl2 19776 | . 2 ⊢ (𝑀 ∈ Abel ↔ (𝑀 ∈ Grp ∧ ∀𝑎 ∈ {𝐼}∀𝑏 ∈ {𝐼} (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝑏) = (𝑏{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎))) |
| 22 | 2, 14, 21 | sylanbrc 583 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 {csn 4606 {cpr 4608 〈cop 4612 ‘cfv 6536 (class class class)co 7410 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 Grpcgrp 18921 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-cmn 19768 df-abl 19769 |
| This theorem is referenced by: abln0 19853 |
| Copyright terms: Public domain | W3C validator |