MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassad Structured version   Visualization version   GIF version

Theorem isassad 21071
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
isassad.v (𝜑𝑉 = (Base‘𝑊))
isassad.f (𝜑𝐹 = (Scalar‘𝑊))
isassad.b (𝜑𝐵 = (Base‘𝐹))
isassad.s (𝜑· = ( ·𝑠𝑊))
isassad.t (𝜑× = (.r𝑊))
isassad.1 (𝜑𝑊 ∈ LMod)
isassad.2 (𝜑𝑊 ∈ Ring)
isassad.3 (𝜑𝐹 ∈ CRing)
isassad.4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
isassad.5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
Assertion
Ref Expression
isassad (𝜑𝑊 ∈ AssAlg)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐵   𝜑,𝑟,𝑥,𝑦   𝑥,𝑉,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝑉(𝑟)

Proof of Theorem isassad
StepHypRef Expression
1 isassad.1 . . 3 (𝜑𝑊 ∈ LMod)
2 isassad.2 . . 3 (𝜑𝑊 ∈ Ring)
3 isassad.f . . . 4 (𝜑𝐹 = (Scalar‘𝑊))
4 isassad.3 . . . 4 (𝜑𝐹 ∈ CRing)
53, 4eqeltrrd 2840 . . 3 (𝜑 → (Scalar‘𝑊) ∈ CRing)
61, 2, 53jca 1127 . 2 (𝜑 → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing))
7 isassad.4 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
8 isassad.5 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
97, 8jca 512 . . . 4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
109ralrimivvva 3127 . . 3 (𝜑 → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
11 isassad.b . . . . 5 (𝜑𝐵 = (Base‘𝐹))
123fveq2d 6778 . . . . 5 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1311, 12eqtrd 2778 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
14 isassad.v . . . . 5 (𝜑𝑉 = (Base‘𝑊))
15 isassad.t . . . . . . . . 9 (𝜑× = (.r𝑊))
16 isassad.s . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1716oveqd 7292 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠𝑊)𝑥))
18 eqidd 2739 . . . . . . . . 9 (𝜑𝑦 = 𝑦)
1915, 17, 18oveq123d 7296 . . . . . . . 8 (𝜑 → ((𝑟 · 𝑥) × 𝑦) = ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦))
20 eqidd 2739 . . . . . . . . 9 (𝜑𝑟 = 𝑟)
2115oveqd 7292 . . . . . . . . 9 (𝜑 → (𝑥 × 𝑦) = (𝑥(.r𝑊)𝑦))
2216, 20, 21oveq123d 7296 . . . . . . . 8 (𝜑 → (𝑟 · (𝑥 × 𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))
2319, 22eqeq12d 2754 . . . . . . 7 (𝜑 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
24 eqidd 2739 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
2516oveqd 7292 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑦) = (𝑟( ·𝑠𝑊)𝑦))
2615, 24, 25oveq123d 7296 . . . . . . . 8 (𝜑 → (𝑥 × (𝑟 · 𝑦)) = (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)))
2726, 22eqeq12d 2754 . . . . . . 7 (𝜑 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
2823, 27anbi12d 631 . . . . . 6 (𝜑 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2914, 28raleqbidv 3336 . . . . 5 (𝜑 → (∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3014, 29raleqbidv 3336 . . . 4 (𝜑 → (∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3113, 30raleqbidv 3336 . . 3 (𝜑 → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3210, 31mpbid 231 . 2 (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
33 eqid 2738 . . 3 (Base‘𝑊) = (Base‘𝑊)
34 eqid 2738 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
35 eqid 2738 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
36 eqid 2738 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
37 eqid 2738 . . 3 (.r𝑊) = (.r𝑊)
3833, 34, 35, 36, 37isassa 21063 . 2 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
396, 32, 38sylanbrc 583 1 (𝜑𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Ringcrg 19783  CRingccrg 19784  LModclmod 20123  AssAlgcasa 21057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-assa 21060
This theorem is referenced by:  issubassa3  21072  sraassa  21074  zlmassa  21106  psrassa  21183  matassa  21593  mendassa  41019
  Copyright terms: Public domain W3C validator