Proof of Theorem isassad
Step | Hyp | Ref
| Expression |
1 | | isassad.1 |
. . 3
⊢ (𝜑 → 𝑊 ∈ LMod) |
2 | | isassad.2 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Ring) |
3 | | isassad.f |
. . . 4
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
4 | | isassad.3 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ CRing) |
5 | 3, 4 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (Scalar‘𝑊) ∈ CRing) |
6 | 1, 2, 5 | 3jca 1127 |
. 2
⊢ (𝜑 → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈
CRing)) |
7 | | isassad.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))) |
8 | | isassad.5 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) |
9 | 7, 8 | jca 512 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) |
10 | 9 | ralrimivvva 3127 |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) |
11 | | isassad.b |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
12 | 3 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(Scalar‘𝑊))) |
13 | 11, 12 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘𝑊))) |
14 | | isassad.v |
. . . . 5
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) |
15 | | isassad.t |
. . . . . . . . 9
⊢ (𝜑 → × =
(.r‘𝑊)) |
16 | | isassad.s |
. . . . . . . . . 10
⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
17 | 16 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠
‘𝑊)𝑥)) |
18 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → 𝑦 = 𝑦) |
19 | 15, 17, 18 | oveq123d 7296 |
. . . . . . . 8
⊢ (𝜑 → ((𝑟 · 𝑥) × 𝑦) = ((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦)) |
20 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → 𝑟 = 𝑟) |
21 | 15 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 × 𝑦) = (𝑥(.r‘𝑊)𝑦)) |
22 | 16, 20, 21 | oveq123d 7296 |
. . . . . . . 8
⊢ (𝜑 → (𝑟 · (𝑥 × 𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦))) |
23 | 19, 22 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝜑 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)))) |
24 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → 𝑥 = 𝑥) |
25 | 16 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 · 𝑦) = (𝑟( ·𝑠
‘𝑊)𝑦)) |
26 | 15, 24, 25 | oveq123d 7296 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 × (𝑟 · 𝑦)) = (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦))) |
27 | 26, 22 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)))) |
28 | 23, 27 | anbi12d 631 |
. . . . . 6
⊢ (𝜑 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
29 | 14, 28 | raleqbidv 3336 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
30 | 14, 29 | raleqbidv 3336 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
31 | 13, 30 | raleqbidv 3336 |
. . 3
⊢ (𝜑 → (∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
32 | 10, 31 | mpbid 231 |
. 2
⊢ (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)))) |
33 | | eqid 2738 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
34 | | eqid 2738 |
. . 3
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
35 | | eqid 2738 |
. . 3
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
36 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
37 | | eqid 2738 |
. . 3
⊢
(.r‘𝑊) = (.r‘𝑊) |
38 | 33, 34, 35, 36, 37 | isassa 21063 |
. 2
⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧
(Scalar‘𝑊) ∈
CRing) ∧ ∀𝑟
∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠
‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑟( ·𝑠
‘𝑊)𝑦)) = (𝑟( ·𝑠
‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
39 | 6, 32, 38 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑊 ∈ AssAlg) |