MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassad Structured version   Visualization version   GIF version

Theorem isassad 21286
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
isassad.v (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘Š))
isassad.f (πœ‘ β†’ 𝐹 = (Scalarβ€˜π‘Š))
isassad.b (πœ‘ β†’ 𝐡 = (Baseβ€˜πΉ))
isassad.s (πœ‘ β†’ Β· = ( ·𝑠 β€˜π‘Š))
isassad.t (πœ‘ β†’ Γ— = (.rβ€˜π‘Š))
isassad.1 (πœ‘ β†’ π‘Š ∈ LMod)
isassad.2 (πœ‘ β†’ π‘Š ∈ Ring)
isassad.3 (πœ‘ β†’ 𝐹 ∈ CRing)
isassad.4 ((πœ‘ ∧ (π‘Ÿ ∈ 𝐡 ∧ π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ ((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))
isassad.5 ((πœ‘ ∧ (π‘Ÿ ∈ 𝐡 ∧ π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))
Assertion
Ref Expression
isassad (πœ‘ β†’ π‘Š ∈ AssAlg)
Distinct variable groups:   π‘₯,π‘Ÿ,𝑦,𝐡   πœ‘,π‘Ÿ,π‘₯,𝑦   π‘₯,𝑉,𝑦   π‘Š,π‘Ÿ,π‘₯,𝑦
Allowed substitution hints:   Β· (π‘₯,𝑦,π‘Ÿ)   Γ— (π‘₯,𝑦,π‘Ÿ)   𝐹(π‘₯,𝑦,π‘Ÿ)   𝑉(π‘Ÿ)

Proof of Theorem isassad
StepHypRef Expression
1 isassad.1 . . 3 (πœ‘ β†’ π‘Š ∈ LMod)
2 isassad.2 . . 3 (πœ‘ β†’ π‘Š ∈ Ring)
3 isassad.f . . . 4 (πœ‘ β†’ 𝐹 = (Scalarβ€˜π‘Š))
4 isassad.3 . . . 4 (πœ‘ β†’ 𝐹 ∈ CRing)
53, 4eqeltrrd 2835 . . 3 (πœ‘ β†’ (Scalarβ€˜π‘Š) ∈ CRing)
61, 2, 53jca 1129 . 2 (πœ‘ β†’ (π‘Š ∈ LMod ∧ π‘Š ∈ Ring ∧ (Scalarβ€˜π‘Š) ∈ CRing))
7 isassad.4 . . . . 5 ((πœ‘ ∧ (π‘Ÿ ∈ 𝐡 ∧ π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ ((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))
8 isassad.5 . . . . 5 ((πœ‘ ∧ (π‘Ÿ ∈ 𝐡 ∧ π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))
97, 8jca 513 . . . 4 ((πœ‘ ∧ (π‘Ÿ ∈ 𝐡 ∧ π‘₯ ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) β†’ (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))))
109ralrimivvva 3197 . . 3 (πœ‘ β†’ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))))
11 isassad.b . . . . 5 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΉ))
123fveq2d 6847 . . . . 5 (πœ‘ β†’ (Baseβ€˜πΉ) = (Baseβ€˜(Scalarβ€˜π‘Š)))
1311, 12eqtrd 2773 . . . 4 (πœ‘ β†’ 𝐡 = (Baseβ€˜(Scalarβ€˜π‘Š)))
14 isassad.v . . . . 5 (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘Š))
15 isassad.t . . . . . . . . 9 (πœ‘ β†’ Γ— = (.rβ€˜π‘Š))
16 isassad.s . . . . . . . . . 10 (πœ‘ β†’ Β· = ( ·𝑠 β€˜π‘Š))
1716oveqd 7375 . . . . . . . . 9 (πœ‘ β†’ (π‘Ÿ Β· π‘₯) = (π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯))
18 eqidd 2734 . . . . . . . . 9 (πœ‘ β†’ 𝑦 = 𝑦)
1915, 17, 18oveq123d 7379 . . . . . . . 8 (πœ‘ β†’ ((π‘Ÿ Β· π‘₯) Γ— 𝑦) = ((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦))
20 eqidd 2734 . . . . . . . . 9 (πœ‘ β†’ π‘Ÿ = π‘Ÿ)
2115oveqd 7375 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ Γ— 𝑦) = (π‘₯(.rβ€˜π‘Š)𝑦))
2216, 20, 21oveq123d 7379 . . . . . . . 8 (πœ‘ β†’ (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)))
2319, 22eqeq12d 2749 . . . . . . 7 (πœ‘ β†’ (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ↔ ((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦))))
24 eqidd 2734 . . . . . . . . 9 (πœ‘ β†’ π‘₯ = π‘₯)
2516oveqd 7375 . . . . . . . . 9 (πœ‘ β†’ (π‘Ÿ Β· 𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦))
2615, 24, 25oveq123d 7379 . . . . . . . 8 (πœ‘ β†’ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)))
2726, 22eqeq12d 2749 . . . . . . 7 (πœ‘ β†’ ((π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ↔ (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦))))
2823, 27anbi12d 632 . . . . . 6 (πœ‘ β†’ ((((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))) ↔ (((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)) ∧ (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)))))
2914, 28raleqbidv 3318 . . . . 5 (πœ‘ β†’ (βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))) ↔ βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)(((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)) ∧ (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)))))
3014, 29raleqbidv 3318 . . . 4 (πœ‘ β†’ (βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))) ↔ βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)(((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)) ∧ (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)))))
3113, 30raleqbidv 3318 . . 3 (πœ‘ β†’ (βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))) ↔ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)(((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)) ∧ (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)))))
3210, 31mpbid 231 . 2 (πœ‘ β†’ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)(((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)) ∧ (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦))))
33 eqid 2733 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
34 eqid 2733 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
35 eqid 2733 . . 3 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
36 eqid 2733 . . 3 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
37 eqid 2733 . . 3 (.rβ€˜π‘Š) = (.rβ€˜π‘Š)
3833, 34, 35, 36, 37isassa 21278 . 2 (π‘Š ∈ AssAlg ↔ ((π‘Š ∈ LMod ∧ π‘Š ∈ Ring ∧ (Scalarβ€˜π‘Š) ∈ CRing) ∧ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)(((π‘Ÿ( ·𝑠 β€˜π‘Š)π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)) ∧ (π‘₯(.rβ€˜π‘Š)(π‘Ÿ( ·𝑠 β€˜π‘Š)𝑦)) = (π‘Ÿ( ·𝑠 β€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑦)))))
396, 32, 38sylanbrc 584 1 (πœ‘ β†’ π‘Š ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  .rcmulr 17139  Scalarcsca 17141   ·𝑠 cvsca 17142  Ringcrg 19969  CRingccrg 19970  LModclmod 20336  AssAlgcasa 21272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5264
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-iota 6449  df-fv 6505  df-ov 7361  df-assa 21275
This theorem is referenced by:  issubassa3  21287  sraassa  21289  zlmassa  21321  psrassa  21399  matassa  21809  mendassa  41564
  Copyright terms: Public domain W3C validator