MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassad Structured version   Visualization version   GIF version

Theorem isassad 21781
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
isassad.v (𝜑𝑉 = (Base‘𝑊))
isassad.f (𝜑𝐹 = (Scalar‘𝑊))
isassad.b (𝜑𝐵 = (Base‘𝐹))
isassad.s (𝜑· = ( ·𝑠𝑊))
isassad.t (𝜑× = (.r𝑊))
isassad.1 (𝜑𝑊 ∈ LMod)
isassad.2 (𝜑𝑊 ∈ Ring)
isassad.4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
isassad.5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
Assertion
Ref Expression
isassad (𝜑𝑊 ∈ AssAlg)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐵   𝜑,𝑟,𝑥,𝑦   𝑥,𝑉,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝑉(𝑟)

Proof of Theorem isassad
StepHypRef Expression
1 isassad.1 . . 3 (𝜑𝑊 ∈ LMod)
2 isassad.2 . . 3 (𝜑𝑊 ∈ Ring)
31, 2jca 511 . 2 (𝜑 → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
4 isassad.4 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
5 isassad.5 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
64, 5jca 511 . . . 4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
76ralrimivvva 3184 . . 3 (𝜑 → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
8 isassad.b . . . . 5 (𝜑𝐵 = (Base‘𝐹))
9 isassad.f . . . . . 6 (𝜑𝐹 = (Scalar‘𝑊))
109fveq2d 6865 . . . . 5 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
118, 10eqtrd 2765 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
12 isassad.v . . . . 5 (𝜑𝑉 = (Base‘𝑊))
13 isassad.t . . . . . . . . 9 (𝜑× = (.r𝑊))
14 isassad.s . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1514oveqd 7407 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠𝑊)𝑥))
16 eqidd 2731 . . . . . . . . 9 (𝜑𝑦 = 𝑦)
1713, 15, 16oveq123d 7411 . . . . . . . 8 (𝜑 → ((𝑟 · 𝑥) × 𝑦) = ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦))
18 eqidd 2731 . . . . . . . . 9 (𝜑𝑟 = 𝑟)
1913oveqd 7407 . . . . . . . . 9 (𝜑 → (𝑥 × 𝑦) = (𝑥(.r𝑊)𝑦))
2014, 18, 19oveq123d 7411 . . . . . . . 8 (𝜑 → (𝑟 · (𝑥 × 𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))
2117, 20eqeq12d 2746 . . . . . . 7 (𝜑 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
22 eqidd 2731 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
2314oveqd 7407 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑦) = (𝑟( ·𝑠𝑊)𝑦))
2413, 22, 23oveq123d 7411 . . . . . . . 8 (𝜑 → (𝑥 × (𝑟 · 𝑦)) = (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)))
2524, 20eqeq12d 2746 . . . . . . 7 (𝜑 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
2621, 25anbi12d 632 . . . . . 6 (𝜑 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2712, 26raleqbidv 3321 . . . . 5 (𝜑 → (∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2812, 27raleqbidv 3321 . . . 4 (𝜑 → (∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2911, 28raleqbidv 3321 . . 3 (𝜑 → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
307, 29mpbid 232 . 2 (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
31 eqid 2730 . . 3 (Base‘𝑊) = (Base‘𝑊)
32 eqid 2730 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
33 eqid 2730 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
34 eqid 2730 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
35 eqid 2730 . . 3 (.r𝑊) = (.r𝑊)
3631, 32, 33, 34, 35isassa 21772 . 2 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
373, 30, 36sylanbrc 583 1 (𝜑𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  Ringcrg 20149  LModclmod 20773  AssAlgcasa 21766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-assa 21769
This theorem is referenced by:  issubassa3  21782  sraassab  21784  sraassaOLD  21786  zlmassa  21819  psrassa  21889  matassa  22338  mendassa  43186
  Copyright terms: Public domain W3C validator