MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassad Structured version   Visualization version   GIF version

Theorem isassad 20981
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
isassad.v (𝜑𝑉 = (Base‘𝑊))
isassad.f (𝜑𝐹 = (Scalar‘𝑊))
isassad.b (𝜑𝐵 = (Base‘𝐹))
isassad.s (𝜑· = ( ·𝑠𝑊))
isassad.t (𝜑× = (.r𝑊))
isassad.1 (𝜑𝑊 ∈ LMod)
isassad.2 (𝜑𝑊 ∈ Ring)
isassad.3 (𝜑𝐹 ∈ CRing)
isassad.4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
isassad.5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
Assertion
Ref Expression
isassad (𝜑𝑊 ∈ AssAlg)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐵   𝜑,𝑟,𝑥,𝑦   𝑥,𝑉,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝑉(𝑟)

Proof of Theorem isassad
StepHypRef Expression
1 isassad.1 . . 3 (𝜑𝑊 ∈ LMod)
2 isassad.2 . . 3 (𝜑𝑊 ∈ Ring)
3 isassad.f . . . 4 (𝜑𝐹 = (Scalar‘𝑊))
4 isassad.3 . . . 4 (𝜑𝐹 ∈ CRing)
53, 4eqeltrrd 2840 . . 3 (𝜑 → (Scalar‘𝑊) ∈ CRing)
61, 2, 53jca 1126 . 2 (𝜑 → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing))
7 isassad.4 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
8 isassad.5 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
97, 8jca 511 . . . 4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
109ralrimivvva 3115 . . 3 (𝜑 → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
11 isassad.b . . . . 5 (𝜑𝐵 = (Base‘𝐹))
123fveq2d 6760 . . . . 5 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1311, 12eqtrd 2778 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
14 isassad.v . . . . 5 (𝜑𝑉 = (Base‘𝑊))
15 isassad.t . . . . . . . . 9 (𝜑× = (.r𝑊))
16 isassad.s . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1716oveqd 7272 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠𝑊)𝑥))
18 eqidd 2739 . . . . . . . . 9 (𝜑𝑦 = 𝑦)
1915, 17, 18oveq123d 7276 . . . . . . . 8 (𝜑 → ((𝑟 · 𝑥) × 𝑦) = ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦))
20 eqidd 2739 . . . . . . . . 9 (𝜑𝑟 = 𝑟)
2115oveqd 7272 . . . . . . . . 9 (𝜑 → (𝑥 × 𝑦) = (𝑥(.r𝑊)𝑦))
2216, 20, 21oveq123d 7276 . . . . . . . 8 (𝜑 → (𝑟 · (𝑥 × 𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))
2319, 22eqeq12d 2754 . . . . . . 7 (𝜑 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
24 eqidd 2739 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
2516oveqd 7272 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑦) = (𝑟( ·𝑠𝑊)𝑦))
2615, 24, 25oveq123d 7276 . . . . . . . 8 (𝜑 → (𝑥 × (𝑟 · 𝑦)) = (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)))
2726, 22eqeq12d 2754 . . . . . . 7 (𝜑 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
2823, 27anbi12d 630 . . . . . 6 (𝜑 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2914, 28raleqbidv 3327 . . . . 5 (𝜑 → (∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3014, 29raleqbidv 3327 . . . 4 (𝜑 → (∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3113, 30raleqbidv 3327 . . 3 (𝜑 → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3210, 31mpbid 231 . 2 (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
33 eqid 2738 . . 3 (Base‘𝑊) = (Base‘𝑊)
34 eqid 2738 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
35 eqid 2738 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
36 eqid 2738 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
37 eqid 2738 . . 3 (.r𝑊) = (.r𝑊)
3833, 34, 35, 36, 37isassa 20973 . 2 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
396, 32, 38sylanbrc 582 1 (𝜑𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  Ringcrg 19698  CRingccrg 19699  LModclmod 20038  AssAlgcasa 20967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-assa 20970
This theorem is referenced by:  issubassa3  20982  sraassa  20984  zlmassa  21016  psrassa  21093  matassa  21501  mendassa  40935
  Copyright terms: Public domain W3C validator