MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassad Structured version   Visualization version   GIF version

Theorem isassad 21804
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
isassad.v (𝜑𝑉 = (Base‘𝑊))
isassad.f (𝜑𝐹 = (Scalar‘𝑊))
isassad.b (𝜑𝐵 = (Base‘𝐹))
isassad.s (𝜑· = ( ·𝑠𝑊))
isassad.t (𝜑× = (.r𝑊))
isassad.1 (𝜑𝑊 ∈ LMod)
isassad.2 (𝜑𝑊 ∈ Ring)
isassad.4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
isassad.5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
Assertion
Ref Expression
isassad (𝜑𝑊 ∈ AssAlg)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐵   𝜑,𝑟,𝑥,𝑦   𝑥,𝑉,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝑉(𝑟)

Proof of Theorem isassad
StepHypRef Expression
1 isassad.1 . . 3 (𝜑𝑊 ∈ LMod)
2 isassad.2 . . 3 (𝜑𝑊 ∈ Ring)
31, 2jca 511 . 2 (𝜑 → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
4 isassad.4 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
5 isassad.5 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
64, 5jca 511 . . . 4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
76ralrimivvva 3179 . . 3 (𝜑 → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
8 isassad.b . . . . 5 (𝜑𝐵 = (Base‘𝐹))
9 isassad.f . . . . . 6 (𝜑𝐹 = (Scalar‘𝑊))
109fveq2d 6832 . . . . 5 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
118, 10eqtrd 2768 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
12 isassad.v . . . . 5 (𝜑𝑉 = (Base‘𝑊))
13 isassad.t . . . . . . . . 9 (𝜑× = (.r𝑊))
14 isassad.s . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1514oveqd 7369 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠𝑊)𝑥))
16 eqidd 2734 . . . . . . . . 9 (𝜑𝑦 = 𝑦)
1713, 15, 16oveq123d 7373 . . . . . . . 8 (𝜑 → ((𝑟 · 𝑥) × 𝑦) = ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦))
18 eqidd 2734 . . . . . . . . 9 (𝜑𝑟 = 𝑟)
1913oveqd 7369 . . . . . . . . 9 (𝜑 → (𝑥 × 𝑦) = (𝑥(.r𝑊)𝑦))
2014, 18, 19oveq123d 7373 . . . . . . . 8 (𝜑 → (𝑟 · (𝑥 × 𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))
2117, 20eqeq12d 2749 . . . . . . 7 (𝜑 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
22 eqidd 2734 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
2314oveqd 7369 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑦) = (𝑟( ·𝑠𝑊)𝑦))
2413, 22, 23oveq123d 7373 . . . . . . . 8 (𝜑 → (𝑥 × (𝑟 · 𝑦)) = (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)))
2524, 20eqeq12d 2749 . . . . . . 7 (𝜑 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
2621, 25anbi12d 632 . . . . . 6 (𝜑 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2712, 26raleqbidv 3313 . . . . 5 (𝜑 → (∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2812, 27raleqbidv 3313 . . . 4 (𝜑 → (∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2911, 28raleqbidv 3313 . . 3 (𝜑 → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
307, 29mpbid 232 . 2 (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
31 eqid 2733 . . 3 (Base‘𝑊) = (Base‘𝑊)
32 eqid 2733 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
33 eqid 2733 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
34 eqid 2733 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
35 eqid 2733 . . 3 (.r𝑊) = (.r𝑊)
3631, 32, 33, 34, 35isassa 21795 . 2 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
373, 30, 36sylanbrc 583 1 (𝜑𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  Ringcrg 20153  LModclmod 20795  AssAlgcasa 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-assa 21792
This theorem is referenced by:  issubassa3  21805  sraassab  21807  sraassaOLD  21809  zlmassa  21842  psrassa  21911  matassa  22360  mendassa  43307
  Copyright terms: Public domain W3C validator