MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assapropd Structured version   Visualization version   GIF version

Theorem assapropd 20076
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
assapropd.1 (𝜑𝐵 = (Base‘𝐾))
assapropd.2 (𝜑𝐵 = (Base‘𝐿))
assapropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
assapropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
assapropd.5 (𝜑𝐹 = (Scalar‘𝐾))
assapropd.6 (𝜑𝐹 = (Scalar‘𝐿))
assapropd.7 𝑃 = (Base‘𝐹)
assapropd.8 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
assapropd (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem assapropd
Dummy variables 𝑤 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 assalmod 20067 . . . 4 (𝐾 ∈ AssAlg → 𝐾 ∈ LMod)
2 assaring 20068 . . . 4 (𝐾 ∈ AssAlg → 𝐾 ∈ Ring)
31, 2jca 515 . . 3 (𝐾 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring))
43a1i 11 . 2 (𝜑 → (𝐾 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)))
5 assalmod 20067 . . . 4 (𝐿 ∈ AssAlg → 𝐿 ∈ LMod)
6 assapropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
7 assapropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
8 assapropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 assapropd.5 . . . . 5 (𝜑𝐹 = (Scalar‘𝐾))
10 assapropd.6 . . . . 5 (𝜑𝐹 = (Scalar‘𝐿))
11 assapropd.7 . . . . 5 𝑃 = (Base‘𝐹)
12 assapropd.8 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
136, 7, 8, 9, 10, 11, 12lmodpropd 19672 . . . 4 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
145, 13syl5ibr 249 . . 3 (𝜑 → (𝐿 ∈ AssAlg → 𝐾 ∈ LMod))
15 assaring 20068 . . . 4 (𝐿 ∈ AssAlg → 𝐿 ∈ Ring)
16 assapropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
176, 7, 8, 16ringpropd 19310 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1815, 17syl5ibr 249 . . 3 (𝜑 → (𝐿 ∈ AssAlg → 𝐾 ∈ Ring))
1914, 18jcad 516 . 2 (𝜑 → (𝐿 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)))
209, 10eqtr3d 2858 . . . . . . . 8 (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿))
2120eleq1d 2896 . . . . . . 7 (𝜑 → ((Scalar‘𝐾) ∈ CRing ↔ (Scalar‘𝐿) ∈ CRing))
2213, 17, 213anbi123d 1433 . . . . . 6 (𝜑 → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ↔ (𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing)))
2322adantr 484 . . . . 5 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ↔ (𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing)))
24 simpll 766 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝜑)
25 simplrl 776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝐾 ∈ LMod)
26 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑟𝑃)
279fveq2d 6647 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐾)))
2811, 27syl5eq 2868 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
2924, 28syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑃 = (Base‘(Scalar‘𝐾)))
3026, 29eleqtrd 2914 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑟 ∈ (Base‘(Scalar‘𝐾)))
31 simprrl 780 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑧𝐵)
3224, 6syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝐵 = (Base‘𝐾))
3331, 32eleqtrd 2914 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑧 ∈ (Base‘𝐾))
34 eqid 2821 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2821 . . . . . . . . . . . . . . . 16 (Scalar‘𝐾) = (Scalar‘𝐾)
36 eqid 2821 . . . . . . . . . . . . . . . 16 ( ·𝑠𝐾) = ( ·𝑠𝐾)
37 eqid 2821 . . . . . . . . . . . . . . . 16 (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾))
3834, 35, 36, 37lmodvscl 19626 . . . . . . . . . . . . . . 15 ((𝐾 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑟( ·𝑠𝐾)𝑧) ∈ (Base‘𝐾))
3925, 30, 33, 38syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) ∈ (Base‘𝐾))
4039, 32eleqtrrd 2915 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)
41 simprrr 781 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑤𝐵)
4216oveqrspc2v 7157 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵𝑤𝐵)) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = ((𝑟( ·𝑠𝐾)𝑧)(.r𝐿)𝑤))
4324, 40, 41, 42syl12anc 835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = ((𝑟( ·𝑠𝐾)𝑧)(.r𝐿)𝑤))
4412oveqrspc2v 7157 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑃𝑧𝐵)) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
4524, 26, 31, 44syl12anc 835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
4645oveq1d 7145 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐿)𝑤) = ((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤))
4743, 46eqtrd 2856 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = ((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤))
48 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝐾 ∈ Ring)
4941, 32eleqtrd 2914 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑤 ∈ (Base‘𝐾))
50 eqid 2821 . . . . . . . . . . . . . . . 16 (.r𝐾) = (.r𝐾)
5134, 50ringcl 19289 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Ring ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑧(.r𝐾)𝑤) ∈ (Base‘𝐾))
5248, 33, 49, 51syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)𝑤) ∈ (Base‘𝐾))
5352, 32eleqtrrd 2915 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)𝑤) ∈ 𝐵)
5412oveqrspc2v 7157 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟𝑃 ∧ (𝑧(.r𝐾)𝑤) ∈ 𝐵)) → (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐾)𝑤)))
5524, 26, 53, 54syl12anc 835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐾)𝑤)))
5616oveqrspc2v 7157 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(.r𝐾)𝑤) = (𝑧(.r𝐿)𝑤))
5724, 31, 41, 56syl12anc 835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)𝑤) = (𝑧(.r𝐿)𝑤))
5857oveq2d 7146 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐿)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))
5955, 58eqtrd 2856 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))
6047, 59eqeq12d 2837 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ↔ ((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))))
6134, 35, 36, 37lmodvscl 19626 . . . . . . . . . . . . . . 15 ((𝐾 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾))
6225, 30, 49, 61syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾))
6362, 32eleqtrrd 2915 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)
6416oveqrspc2v 7157 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵 ∧ (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)) → (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐾)𝑤)))
6524, 31, 63, 64syl12anc 835 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐾)𝑤)))
6612oveqrspc2v 7157 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑃𝑤𝐵)) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
6724, 26, 41, 66syl12anc 835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
6867oveq2d 7146 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐿)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)))
6965, 68eqtrd 2856 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)))
7069, 59eqeq12d 2837 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ↔ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))))
7160, 70anbi12d 633 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
7271anassrs 471 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ 𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵)) → ((((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
73722ralbidva 3186 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ 𝑟𝑃) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
7473ralbidva 3184 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
7528adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝑃 = (Base‘(Scalar‘𝐾)))
766adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐾))
7776raleqdv 3396 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
7876, 77raleqbidv 3386 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
7975, 78raleqbidv 3386 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
8010fveq2d 6647 . . . . . . . . 9 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿)))
8111, 80syl5eq 2868 . . . . . . . 8 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
8281adantr 484 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝑃 = (Base‘(Scalar‘𝐿)))
837adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐿))
8483raleqdv 3396 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8583, 84raleqbidv 3386 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))) ↔ ∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8682, 85raleqbidv 3386 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8774, 79, 863bitr3d 312 . . . . 5 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8823, 87anbi12d 633 . . . 4 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))) ↔ ((𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))))))
8934, 35, 37, 36, 50isassa 20063 . . . 4 (𝐾 ∈ AssAlg ↔ ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
90 eqid 2821 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
91 eqid 2821 . . . . 5 (Scalar‘𝐿) = (Scalar‘𝐿)
92 eqid 2821 . . . . 5 (Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿))
93 eqid 2821 . . . . 5 ( ·𝑠𝐿) = ( ·𝑠𝐿)
94 eqid 2821 . . . . 5 (.r𝐿) = (.r𝐿)
9590, 91, 92, 93, 94isassa 20063 . . . 4 (𝐿 ∈ AssAlg ↔ ((𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
9688, 89, 953bitr4g 317 . . 3 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))
9796ex 416 . 2 (𝜑 → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring) → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg)))
984, 19, 97pm5.21ndd 384 1 (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3126  cfv 6328  (class class class)co 7130  Basecbs 16461  +gcplusg 16543  .rcmulr 16544  Scalarcsca 16546   ·𝑠 cvsca 16547  Ringcrg 19275  CRingccrg 19276  LModclmod 19609  AssAlgcasa 20057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-plusg 16556  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-mgp 19218  df-ur 19230  df-ring 19277  df-lmod 19611  df-assa 20060
This theorem is referenced by:  opsrassa  20244
  Copyright terms: Public domain W3C validator