Step | Hyp | Ref
| Expression |
1 | | assalmod 21398 |
. . . 4
⊢ (𝐾 ∈ AssAlg → 𝐾 ∈ LMod) |
2 | | assaring 21399 |
. . . 4
⊢ (𝐾 ∈ AssAlg → 𝐾 ∈ Ring) |
3 | 1, 2 | jca 513 |
. . 3
⊢ (𝐾 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (𝐾 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring))) |
5 | | assalmod 21398 |
. . . 4
⊢ (𝐿 ∈ AssAlg → 𝐿 ∈ LMod) |
6 | | assapropd.1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
7 | | assapropd.2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
8 | | assapropd.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
9 | | assapropd.5 |
. . . . 5
⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) |
10 | | assapropd.6 |
. . . . 5
⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) |
11 | | assapropd.7 |
. . . . 5
⊢ 𝑃 = (Base‘𝐹) |
12 | | assapropd.8 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) |
13 | 6, 7, 8, 9, 10, 11, 12 | lmodpropd 20522 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
14 | 5, 13 | imbitrrid 245 |
. . 3
⊢ (𝜑 → (𝐿 ∈ AssAlg → 𝐾 ∈ LMod)) |
15 | | assaring 21399 |
. . . 4
⊢ (𝐿 ∈ AssAlg → 𝐿 ∈ Ring) |
16 | | assapropd.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
17 | 6, 7, 8, 16 | ringpropd 20091 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
18 | 15, 17 | imbitrrid 245 |
. . 3
⊢ (𝜑 → (𝐿 ∈ AssAlg → 𝐾 ∈ Ring)) |
19 | 14, 18 | jcad 514 |
. 2
⊢ (𝜑 → (𝐿 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring))) |
20 | 13, 17 | anbi12d 632 |
. . . . . 6
⊢ (𝜑 → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ LMod ∧ 𝐿 ∈ Ring))) |
21 | 20 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring) ↔ (𝐿 ∈ LMod ∧ 𝐿 ∈ Ring))) |
22 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝜑) |
23 | | simplrl 776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝐾 ∈ LMod) |
24 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝑟 ∈ 𝑃) |
25 | 9 | fveq2d 6891 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(Scalar‘𝐾))) |
26 | 11, 25 | eqtrid 2785 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
27 | 22, 26 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝑃 = (Base‘(Scalar‘𝐾))) |
28 | 24, 27 | eleqtrd 2836 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝑟 ∈ (Base‘(Scalar‘𝐾))) |
29 | | simprrl 780 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝑧 ∈ 𝐵) |
30 | 22, 6 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝐵 = (Base‘𝐾)) |
31 | 29, 30 | eleqtrd 2836 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝑧 ∈ (Base‘𝐾)) |
32 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘𝐾) |
33 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
⊢
(Scalar‘𝐾) =
(Scalar‘𝐾) |
34 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) |
35 | | eqid 2733 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾)) |
36 | 32, 33, 34, 35 | lmodvscl 20476 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ LMod ∧ 𝑟 ∈
(Base‘(Scalar‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑟( ·𝑠
‘𝐾)𝑧) ∈ (Base‘𝐾)) |
37 | 23, 28, 31, 36 | syl3anc 1372 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)𝑧) ∈ (Base‘𝐾)) |
38 | 37, 30 | eleqtrrd 2837 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)𝑧) ∈ 𝐵) |
39 | | simprrr 781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝑤 ∈ 𝐵) |
40 | 16 | oveqrspc2v 7430 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟( ·𝑠
‘𝐾)𝑧) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = ((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐿)𝑤)) |
41 | 22, 38, 39, 40 | syl12anc 836 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → ((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = ((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐿)𝑤)) |
42 | 12 | oveqrspc2v 7430 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑃 ∧ 𝑧 ∈ 𝐵)) → (𝑟( ·𝑠
‘𝐾)𝑧) = (𝑟( ·𝑠
‘𝐿)𝑧)) |
43 | 22, 24, 29, 42 | syl12anc 836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)𝑧) = (𝑟( ·𝑠
‘𝐿)𝑧)) |
44 | 43 | oveq1d 7418 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → ((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐿)𝑤) = ((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤)) |
45 | 41, 44 | eqtrd 2773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → ((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = ((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤)) |
46 | | eqid 2733 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝐾) = (.r‘𝐾) |
47 | | simplrr 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝐾 ∈ Ring) |
48 | 39, 30 | eleqtrd 2836 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → 𝑤 ∈ (Base‘𝐾)) |
49 | 32, 46, 47, 31, 48 | ringcld 20069 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑧(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
50 | 49, 30 | eleqtrrd 2837 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑧(.r‘𝐾)𝑤) ∈ 𝐵) |
51 | 12 | oveqrspc2v 7430 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑃 ∧ (𝑧(.r‘𝐾)𝑤) ∈ 𝐵)) → (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐾)𝑤))) |
52 | 22, 24, 50, 51 | syl12anc 836 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐾)𝑤))) |
53 | 16 | oveqrspc2v 7430 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧(.r‘𝐾)𝑤) = (𝑧(.r‘𝐿)𝑤)) |
54 | 22, 29, 39, 53 | syl12anc 836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑧(.r‘𝐾)𝑤) = (𝑧(.r‘𝐿)𝑤)) |
55 | 54 | oveq2d 7419 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))) |
56 | 52, 55 | eqtrd 2773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))) |
57 | 45, 56 | eqeq12d 2749 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ↔ ((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)))) |
58 | 32, 33, 34, 35 | lmodvscl 20476 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ LMod ∧ 𝑟 ∈
(Base‘(Scalar‘𝐾)) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑟( ·𝑠
‘𝐾)𝑤) ∈ (Base‘𝐾)) |
59 | 23, 28, 48, 58 | syl3anc 1372 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)𝑤) ∈ (Base‘𝐾)) |
60 | 59, 30 | eleqtrrd 2837 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)𝑤) ∈ 𝐵) |
61 | 16 | oveqrspc2v 7430 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ (𝑟( ·𝑠
‘𝐾)𝑤) ∈ 𝐵)) → (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐾)𝑤))) |
62 | 22, 29, 60, 61 | syl12anc 836 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐾)𝑤))) |
63 | 12 | oveqrspc2v 7430 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑃 ∧ 𝑤 ∈ 𝐵)) → (𝑟( ·𝑠
‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐿)𝑤)) |
64 | 22, 24, 39, 63 | syl12anc 836 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑟( ·𝑠
‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐿)𝑤)) |
65 | 64 | oveq2d 7419 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤))) |
66 | 62, 65 | eqtrd 2773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤))) |
67 | 66, 56 | eqeq12d 2749 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → ((𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ↔ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)))) |
68 | 57, 67 | anbi12d 632 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟 ∈ 𝑃 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) → ((((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ (((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
69 | 68 | anassrs 469 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ 𝑟 ∈ 𝑃) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ (((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
70 | 69 | 2ralbidva 3217 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ 𝑟 ∈ 𝑃) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
71 | 70 | ralbidva 3176 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟 ∈ 𝑃 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ ∀𝑟 ∈ 𝑃 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
72 | 26 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝑃 = (Base‘(Scalar‘𝐾))) |
73 | 6 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐾)) |
74 | 73 | raleqdv 3326 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))))) |
75 | 73, 74 | raleqbidv 3343 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ ∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))))) |
76 | 72, 75 | raleqbidv 3343 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟 ∈ 𝑃 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))))) |
77 | 10 | fveq2d 6891 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(Scalar‘𝐿))) |
78 | 11, 77 | eqtrid 2785 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
79 | 78 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝑃 = (Base‘(Scalar‘𝐿))) |
80 | 7 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐿)) |
81 | 80 | raleqdv 3326 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
82 | 80, 81 | raleqbidv 3343 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))) ↔ ∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
83 | 79, 82 | raleqbidv 3343 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟 ∈ 𝑃 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
84 | 71, 76, 83 | 3bitr3d 309 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟 ∈
(Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
85 | 21, 84 | anbi12d 632 |
. . . 4
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring) ∧ ∀𝑟 ∈
(Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)))) ↔ ((𝐿 ∈ LMod ∧ 𝐿 ∈ Ring) ∧ ∀𝑟 ∈
(Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)))))) |
86 | 32, 33, 35, 34, 46 | isassa 21394 |
. . . 4
⊢ (𝐾 ∈ AssAlg ↔ ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring) ∧
∀𝑟 ∈
(Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠
‘𝐾)𝑧)(.r‘𝐾)𝑤) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤)) ∧ (𝑧(.r‘𝐾)(𝑟( ·𝑠
‘𝐾)𝑤)) = (𝑟( ·𝑠
‘𝐾)(𝑧(.r‘𝐾)𝑤))))) |
87 | | eqid 2733 |
. . . . 5
⊢
(Base‘𝐿) =
(Base‘𝐿) |
88 | | eqid 2733 |
. . . . 5
⊢
(Scalar‘𝐿) =
(Scalar‘𝐿) |
89 | | eqid 2733 |
. . . . 5
⊢
(Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿)) |
90 | | eqid 2733 |
. . . . 5
⊢ (
·𝑠 ‘𝐿) = ( ·𝑠
‘𝐿) |
91 | | eqid 2733 |
. . . . 5
⊢
(.r‘𝐿) = (.r‘𝐿) |
92 | 87, 88, 89, 90, 91 | isassa 21394 |
. . . 4
⊢ (𝐿 ∈ AssAlg ↔ ((𝐿 ∈ LMod ∧ 𝐿 ∈ Ring) ∧
∀𝑟 ∈
(Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠
‘𝐿)𝑧)(.r‘𝐿)𝑤) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤)) ∧ (𝑧(.r‘𝐿)(𝑟( ·𝑠
‘𝐿)𝑤)) = (𝑟( ·𝑠
‘𝐿)(𝑧(.r‘𝐿)𝑤))))) |
93 | 85, 86, 92 | 3bitr4g 314 |
. . 3
⊢ ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg)) |
94 | 93 | ex 414 |
. 2
⊢ (𝜑 → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring) → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))) |
95 | 4, 19, 94 | pm5.21ndd 381 |
1
⊢ (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg)) |