Step | Hyp | Ref
| Expression |
1 | | topontop 21970 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
2 | 1 | 3ad2ant1 1131 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Top) |
3 | | elpwi 4539 |
. . . 4
⊢ (𝑥 ∈ 𝒫 𝐽 → 𝑥 ⊆ 𝐽) |
4 | | simpl2 1190 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → 𝐾 ∈ Comp) |
5 | | simprl 767 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → 𝑥 ⊆ 𝐽) |
6 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → 𝐽 ⊆ 𝐾) |
7 | 5, 6 | sstrd 3927 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → 𝑥 ⊆ 𝐾) |
8 | | simpl1 1189 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → 𝐽 ∈ (TopOn‘𝑋)) |
9 | | toponuni 21971 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
10 | 8, 9 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → 𝑋 = ∪
𝐽) |
11 | | simprr 769 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → ∪ 𝐽 =
∪ 𝑥) |
12 | 10, 11 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → 𝑋 = ∪
𝑥) |
13 | | sscmp.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐾 |
14 | 13 | cmpcov 22448 |
. . . . . . 7
⊢ ((𝐾 ∈ Comp ∧ 𝑥 ⊆ 𝐾 ∧ 𝑋 = ∪ 𝑥) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
15 | 4, 7, 12, 14 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
16 | 10 | eqeq1d 2740 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → (𝑋 = ∪
𝑦 ↔ ∪ 𝐽 =
∪ 𝑦)) |
17 | 16 | rexbidv 3225 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∪ 𝐽 =
∪ 𝑦)) |
18 | 15, 17 | mpbid 231 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ (𝑥 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∪ 𝐽 =
∪ 𝑦) |
19 | 18 | expr 456 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ⊆ 𝐽) → (∪ 𝐽 = ∪
𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∪ 𝐽 =
∪ 𝑦)) |
20 | 3, 19 | sylan2 592 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ 𝒫 𝐽) → (∪ 𝐽 = ∪
𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∪ 𝐽 =
∪ 𝑦)) |
21 | 20 | ralrimiva 3107 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → ∀𝑥 ∈ 𝒫 𝐽(∪ 𝐽 = ∪
𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∪ 𝐽 =
∪ 𝑦)) |
22 | | eqid 2738 |
. . 3
⊢ ∪ 𝐽 =
∪ 𝐽 |
23 | 22 | iscmp 22447 |
. 2
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(∪
𝐽 = ∪ 𝑥
→ ∃𝑦 ∈
(𝒫 𝑥 ∩
Fin)∪ 𝐽 = ∪ 𝑦))) |
24 | 2, 21, 23 | sylanbrc 582 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Comp) |