MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscmp Structured version   Visualization version   GIF version

Theorem sscmp 22662
Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
sscmp.1 𝑋 = 𝐾
Assertion
Ref Expression
sscmp ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)

Proof of Theorem sscmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22168 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1132 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Top)
3 elpwi 4554 . . . 4 (𝑥 ∈ 𝒫 𝐽𝑥𝐽)
4 simpl2 1191 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐾 ∈ Comp)
5 simprl 768 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐽)
6 simpl3 1192 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽𝐾)
75, 6sstrd 3942 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐾)
8 simpl1 1190 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
9 toponuni 22169 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
108, 9syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝐽)
11 simprr 770 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 = 𝑥)
1210, 11eqtrd 2776 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝑥)
13 sscmp.1 . . . . . . . 8 𝑋 = 𝐾
1413cmpcov 22646 . . . . . . 7 ((𝐾 ∈ Comp ∧ 𝑥𝐾𝑋 = 𝑥) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
154, 7, 12, 14syl3anc 1370 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
1610eqeq1d 2738 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (𝑋 = 𝑦 𝐽 = 𝑦))
1716rexbidv 3171 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
1815, 17mpbid 231 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)
1918expr 457 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
203, 19sylan2 593 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
2120ralrimiva 3139 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
22 eqid 2736 . . 3 𝐽 = 𝐽
2322iscmp 22645 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)))
242, 21, 23sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wrex 3070  cin 3897  wss 3898  𝒫 cpw 4547   cuni 4852  cfv 6479  Fincfn 8804  Topctop 22148  TopOnctopon 22165  Compccmp 22643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-topon 22166  df-cmp 22644
This theorem is referenced by:  kgencmp2  22803  kgen2ss  22812
  Copyright terms: Public domain W3C validator