MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscmp Structured version   Visualization version   GIF version

Theorem sscmp 23299
Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
sscmp.1 𝑋 = 𝐾
Assertion
Ref Expression
sscmp ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)

Proof of Theorem sscmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22807 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1133 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Top)
3 elpwi 4573 . . . 4 (𝑥 ∈ 𝒫 𝐽𝑥𝐽)
4 simpl2 1193 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐾 ∈ Comp)
5 simprl 770 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐽)
6 simpl3 1194 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽𝐾)
75, 6sstrd 3960 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐾)
8 simpl1 1192 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
9 toponuni 22808 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
108, 9syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝐽)
11 simprr 772 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 = 𝑥)
1210, 11eqtrd 2765 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝑥)
13 sscmp.1 . . . . . . . 8 𝑋 = 𝐾
1413cmpcov 23283 . . . . . . 7 ((𝐾 ∈ Comp ∧ 𝑥𝐾𝑋 = 𝑥) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
154, 7, 12, 14syl3anc 1373 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
1610eqeq1d 2732 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (𝑋 = 𝑦 𝐽 = 𝑦))
1716rexbidv 3158 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
1815, 17mpbid 232 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)
1918expr 456 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
203, 19sylan2 593 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
2120ralrimiva 3126 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
22 eqid 2730 . . 3 𝐽 = 𝐽
2322iscmp 23282 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)))
242, 21, 23sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  Fincfn 8921  Topctop 22787  TopOnctopon 22804  Compccmp 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topon 22805  df-cmp 23281
This theorem is referenced by:  kgencmp2  23440  kgen2ss  23449
  Copyright terms: Public domain W3C validator