MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscmp Structured version   Visualization version   GIF version

Theorem sscmp 23434
Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
sscmp.1 𝑋 = 𝐾
Assertion
Ref Expression
sscmp ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)

Proof of Theorem sscmp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22940 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1133 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Top)
3 elpwi 4629 . . . 4 (𝑥 ∈ 𝒫 𝐽𝑥𝐽)
4 simpl2 1192 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐾 ∈ Comp)
5 simprl 770 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐽)
6 simpl3 1193 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽𝐾)
75, 6sstrd 4019 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑥𝐾)
8 simpl1 1191 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
9 toponuni 22941 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
108, 9syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝐽)
11 simprr 772 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝐽 = 𝑥)
1210, 11eqtrd 2780 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → 𝑋 = 𝑥)
13 sscmp.1 . . . . . . . 8 𝑋 = 𝐾
1413cmpcov 23418 . . . . . . 7 ((𝐾 ∈ Comp ∧ 𝑥𝐾𝑋 = 𝑥) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
154, 7, 12, 14syl3anc 1371 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
1610eqeq1d 2742 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (𝑋 = 𝑦 𝐽 = 𝑦))
1716rexbidv 3185 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
1815, 17mpbid 232 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ (𝑥𝐽 𝐽 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)
1918expr 456 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
203, 19sylan2 592 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) ∧ 𝑥 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
2120ralrimiva 3152 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦))
22 eqid 2740 . . 3 𝐽 = 𝐽
2322iscmp 23417 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽( 𝐽 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) 𝐽 = 𝑦)))
242, 21, 23sylanbrc 582 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽𝐾) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  cfv 6573  Fincfn 9003  Topctop 22920  TopOnctopon 22937  Compccmp 23415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topon 22938  df-cmp 23416
This theorem is referenced by:  kgencmp2  23575  kgen2ss  23584
  Copyright terms: Public domain W3C validator