![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmpcov | Structured version Visualization version GIF version |
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cmpcov | ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4942 | . . . . 5 ⊢ (𝑟 = 𝑆 → ∪ 𝑟 = ∪ 𝑆) | |
2 | 1 | eqeq2d 2751 | . . . 4 ⊢ (𝑟 = 𝑆 → (𝑋 = ∪ 𝑟 ↔ 𝑋 = ∪ 𝑆)) |
3 | pweq 4636 | . . . . . 6 ⊢ (𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆) | |
4 | 3 | ineq1d 4240 | . . . . 5 ⊢ (𝑟 = 𝑆 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
5 | 4 | rexeqdv 3335 | . . . 4 ⊢ (𝑟 = 𝑆 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠)) |
6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑟 = 𝑆 → ((𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠) ↔ (𝑋 = ∪ 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠))) |
7 | iscmp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | iscmp 23417 | . . . . 5 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠))) |
9 | 8 | simprbi 496 | . . . 4 ⊢ (𝐽 ∈ Comp → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠)) |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠)) |
11 | ssexg 5341 | . . . . 5 ⊢ ((𝑆 ⊆ 𝐽 ∧ 𝐽 ∈ Comp) → 𝑆 ∈ V) | |
12 | 11 | ancoms 458 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ∈ V) |
13 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ⊆ 𝐽) | |
14 | 12, 13 | elpwd 4628 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ∈ 𝒫 𝐽) |
15 | 6, 10, 14 | rspcdva 3636 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → (𝑋 = ∪ 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠)) |
16 | 15 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 Fincfn 9003 Topctop 22920 Compccmp 23415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 df-uni 4932 df-cmp 23416 |
This theorem is referenced by: cmpcov2 23419 cncmp 23421 discmp 23427 cmpcld 23431 sscmp 23434 comppfsc 23561 alexsubALTlem1 24076 ptcmplem3 24083 lebnum 25015 heibor1 37770 |
Copyright terms: Public domain | W3C validator |