![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmpcov | Structured version Visualization version GIF version |
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cmpcov | ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4918 | . . . . 5 ⊢ (𝑟 = 𝑆 → ∪ 𝑟 = ∪ 𝑆) | |
2 | 1 | eqeq2d 2743 | . . . 4 ⊢ (𝑟 = 𝑆 → (𝑋 = ∪ 𝑟 ↔ 𝑋 = ∪ 𝑆)) |
3 | pweq 4615 | . . . . . 6 ⊢ (𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆) | |
4 | 3 | ineq1d 4210 | . . . . 5 ⊢ (𝑟 = 𝑆 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
5 | 4 | rexeqdv 3326 | . . . 4 ⊢ (𝑟 = 𝑆 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠)) |
6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑟 = 𝑆 → ((𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠) ↔ (𝑋 = ∪ 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠))) |
7 | iscmp.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | iscmp 22883 | . . . . 5 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠))) |
9 | 8 | simprbi 497 | . . . 4 ⊢ (𝐽 ∈ Comp → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠)) |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = ∪ 𝑠)) |
11 | ssexg 5322 | . . . . 5 ⊢ ((𝑆 ⊆ 𝐽 ∧ 𝐽 ∈ Comp) → 𝑆 ∈ V) | |
12 | 11 | ancoms 459 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ∈ V) |
13 | simpr 485 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ⊆ 𝐽) | |
14 | 12, 13 | elpwd 4607 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → 𝑆 ∈ 𝒫 𝐽) |
15 | 6, 10, 14 | rspcdva 3613 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽) → (𝑋 = ∪ 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠)) |
16 | 15 | 3impia 1117 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 Fincfn 8935 Topctop 22386 Compccmp 22881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-in 3954 df-ss 3964 df-pw 4603 df-uni 4908 df-cmp 22882 |
This theorem is referenced by: cmpcov2 22885 cncmp 22887 discmp 22893 cmpcld 22897 sscmp 22900 comppfsc 23027 alexsubALTlem1 23542 ptcmplem3 23549 lebnum 24471 heibor1 36666 |
Copyright terms: Public domain | W3C validator |