MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcov Structured version   Visualization version   GIF version

Theorem cmpcov 23283
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.)
Hypothesis
Ref Expression
iscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
cmpcov ((𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)
Distinct variable groups:   𝐽,𝑠   𝑆,𝑠
Allowed substitution hint:   𝑋(𝑠)

Proof of Theorem cmpcov
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 unieq 4885 . . . . 5 (𝑟 = 𝑆 𝑟 = 𝑆)
21eqeq2d 2741 . . . 4 (𝑟 = 𝑆 → (𝑋 = 𝑟𝑋 = 𝑆))
3 pweq 4580 . . . . . 6 (𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆)
43ineq1d 4185 . . . . 5 (𝑟 = 𝑆 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
54rexeqdv 3302 . . . 4 (𝑟 = 𝑆 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠))
62, 5imbi12d 344 . . 3 (𝑟 = 𝑆 → ((𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠) ↔ (𝑋 = 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)))
7 iscmp.1 . . . . . 6 𝑋 = 𝐽
87iscmp 23282 . . . . 5 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠)))
98simprbi 496 . . . 4 (𝐽 ∈ Comp → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠))
109adantr 480 . . 3 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠))
11 ssexg 5281 . . . . 5 ((𝑆𝐽𝐽 ∈ Comp) → 𝑆 ∈ V)
1211ancoms 458 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆 ∈ V)
13 simpr 484 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆𝐽)
1412, 13elpwd 4572 . . 3 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆 ∈ 𝒫 𝐽)
156, 10, 14rspcdva 3592 . 2 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → (𝑋 = 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠))
16153impia 1117 1 ((𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  Fincfn 8921  Topctop 22787  Compccmp 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568  df-uni 4875  df-cmp 23281
This theorem is referenced by:  cmpcov2  23284  cncmp  23286  discmp  23292  cmpcld  23296  sscmp  23299  comppfsc  23426  alexsubALTlem1  23941  ptcmplem3  23948  lebnum  24870  heibor1  37811
  Copyright terms: Public domain W3C validator