MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcov Structured version   Visualization version   GIF version

Theorem cmpcov 22623
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.)
Hypothesis
Ref Expression
iscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
cmpcov ((𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)
Distinct variable groups:   𝐽,𝑠   𝑆,𝑠
Allowed substitution hint:   𝑋(𝑠)

Proof of Theorem cmpcov
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 unieq 4861 . . . . 5 (𝑟 = 𝑆 𝑟 = 𝑆)
21eqeq2d 2748 . . . 4 (𝑟 = 𝑆 → (𝑋 = 𝑟𝑋 = 𝑆))
3 pweq 4559 . . . . . 6 (𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆)
43ineq1d 4156 . . . . 5 (𝑟 = 𝑆 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
54rexeqdv 3311 . . . 4 (𝑟 = 𝑆 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠))
62, 5imbi12d 344 . . 3 (𝑟 = 𝑆 → ((𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠) ↔ (𝑋 = 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)))
7 iscmp.1 . . . . . 6 𝑋 = 𝐽
87iscmp 22622 . . . . 5 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠)))
98simprbi 497 . . . 4 (𝐽 ∈ Comp → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠))
109adantr 481 . . 3 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠))
11 ssexg 5262 . . . . 5 ((𝑆𝐽𝐽 ∈ Comp) → 𝑆 ∈ V)
1211ancoms 459 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆 ∈ V)
13 simpr 485 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆𝐽)
1412, 13elpwd 4551 . . 3 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆 ∈ 𝒫 𝐽)
156, 10, 14rspcdva 3571 . 2 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → (𝑋 = 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠))
16153impia 1116 1 ((𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  wrex 3071  Vcvv 3441  cin 3896  wss 3897  𝒫 cpw 4545   cuni 4850  Fincfn 8783  Topctop 22125  Compccmp 22620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-in 3904  df-ss 3914  df-pw 4547  df-uni 4851  df-cmp 22621
This theorem is referenced by:  cmpcov2  22624  cncmp  22626  discmp  22632  cmpcld  22636  sscmp  22639  comppfsc  22766  alexsubALTlem1  23281  ptcmplem3  23288  lebnum  24210  heibor1  36040
  Copyright terms: Public domain W3C validator