MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcov Structured version   Visualization version   GIF version

Theorem cmpcov 21605
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.)
Hypothesis
Ref Expression
iscmp.1 𝑋 = 𝐽
Assertion
Ref Expression
cmpcov ((𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)
Distinct variable groups:   𝐽,𝑠   𝑆,𝑠
Allowed substitution hint:   𝑋(𝑠)

Proof of Theorem cmpcov
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 unieq 4681 . . . . 5 (𝑟 = 𝑆 𝑟 = 𝑆)
21eqeq2d 2788 . . . 4 (𝑟 = 𝑆 → (𝑋 = 𝑟𝑋 = 𝑆))
3 pweq 4382 . . . . . 6 (𝑟 = 𝑆 → 𝒫 𝑟 = 𝒫 𝑆)
43ineq1d 4036 . . . . 5 (𝑟 = 𝑆 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
54rexeqdv 3341 . . . 4 (𝑟 = 𝑆 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠))
62, 5imbi12d 336 . . 3 (𝑟 = 𝑆 → ((𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠) ↔ (𝑋 = 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)))
7 iscmp.1 . . . . . 6 𝑋 = 𝐽
87iscmp 21604 . . . . 5 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠)))
98simprbi 492 . . . 4 (𝐽 ∈ Comp → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠))
109adantr 474 . . 3 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → ∀𝑟 ∈ 𝒫 𝐽(𝑋 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑋 = 𝑠))
11 simpr 479 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆𝐽)
12 ssexg 5043 . . . . . 6 ((𝑆𝐽𝐽 ∈ Comp) → 𝑆 ∈ V)
1312ancoms 452 . . . . 5 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆 ∈ V)
14 elpwg 4387 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ 𝒫 𝐽𝑆𝐽))
1513, 14syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → (𝑆 ∈ 𝒫 𝐽𝑆𝐽))
1611, 15mpbird 249 . . 3 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → 𝑆 ∈ 𝒫 𝐽)
176, 10, 16rspcdva 3517 . 2 ((𝐽 ∈ Comp ∧ 𝑆𝐽) → (𝑋 = 𝑆 → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠))
18173impia 1106 1 ((𝐽 ∈ Comp ∧ 𝑆𝐽𝑋 = 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = 𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  Vcvv 3398  cin 3791  wss 3792  𝒫 cpw 4379   cuni 4673  Fincfn 8243  Topctop 21109  Compccmp 21602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754  ax-sep 5019
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-in 3799  df-ss 3806  df-pw 4381  df-uni 4674  df-cmp 21603
This theorem is referenced by:  cmpcov2  21606  cncmp  21608  discmp  21614  cmpcld  21618  sscmp  21621  comppfsc  21748  alexsubALTlem1  22263  ptcmplem3  22270  lebnum  23175  heibor1  34238
  Copyright terms: Public domain W3C validator