MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmp Structured version   Visualization version   GIF version

Theorem cncmp 23421
Description: Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cncmp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncmp ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)

Proof of Theorem cncmp
Dummy variables 𝑐 𝑑 𝑠 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 23270 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1135 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 elpwi 4629 . . . 4 (𝑢 ∈ 𝒫 𝐾𝑢𝐾)
4 simpl1 1191 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 ∈ Comp)
5 simpl3 1193 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹 ∈ (𝐽 Cn 𝐾))
6 simprl 770 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑢𝐾)
76sselda 4008 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝐾)
8 cnima 23294 . . . . . . . . . 10 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
95, 7, 8syl2an2r 684 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹𝑦) ∈ 𝐽)
109fmpttd 7149 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝑦𝑢 ↦ (𝐹𝑦)):𝑢𝐽)
1110frnd 6755 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽)
12 simprr 772 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑌 = 𝑢)
1312imaeq2d 6089 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = (𝐹 𝑢))
14 eqid 2740 . . . . . . . . . . 11 𝐽 = 𝐽
15 cncmp.2 . . . . . . . . . . 11 𝑌 = 𝐾
1614, 15cnf 23275 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
175, 16syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹: 𝐽𝑌)
18 fimacnv 6769 . . . . . . . . 9 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
1917, 18syl 17 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = 𝐽)
209ralrimiva 3152 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽)
21 dfiun2g 5053 . . . . . . . . . 10 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
2220, 21syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
23 imauni 7283 . . . . . . . . 9 (𝐹 𝑢) = 𝑦𝑢 (𝐹𝑦)
24 eqid 2740 . . . . . . . . . . 11 (𝑦𝑢 ↦ (𝐹𝑦)) = (𝑦𝑢 ↦ (𝐹𝑦))
2524rnmpt 5980 . . . . . . . . . 10 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2625unieqi 4943 . . . . . . . . 9 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2722, 23, 263eqtr4g 2805 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹 𝑢) = ran (𝑦𝑢 ↦ (𝐹𝑦)))
2813, 19, 273eqtr3d 2788 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦)))
2914cmpcov 23418 . . . . . . 7 ((𝐽 ∈ Comp ∧ ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦))) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
304, 11, 28, 29syl3anc 1371 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
31 elfpw 9424 . . . . . . . 8 (𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) ↔ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin))
32 simprll 778 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)))
3332sselda 4008 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦)))
34 simpll2 1213 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝐹:𝑋onto𝑌)
35 elssuni 4961 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐾𝑦 𝐾)
3635, 15sseqtrrdi 4060 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐾𝑦𝑌)
377, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑌)
38 foimacnv 6879 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:𝑋onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
3934, 37, 38syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) = 𝑦)
40 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑢)
4139, 40eqeltrd 2844 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
4241ralrimiva 3152 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
43 imaeq2 6085 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝐹𝑦) → (𝐹𝑐) = (𝐹 “ (𝐹𝑦)))
4443eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝐹𝑦) → ((𝐹𝑐) ∈ 𝑢 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4524, 44ralrnmptw 7128 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4620, 45syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4742, 46mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
4847adantr 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
4948r19.21bi 3257 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))) → (𝐹𝑐) ∈ 𝑢)
5033, 49syldan 590 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → (𝐹𝑐) ∈ 𝑢)
5150fmpttd 7149 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝑐𝑠 ↦ (𝐹𝑐)):𝑠𝑢)
5251frnd 6755 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢)
53 simprlr 779 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ∈ Fin)
54 eqid 2740 . . . . . . . . . . . . . 14 (𝑐𝑠 ↦ (𝐹𝑐)) = (𝑐𝑠 ↦ (𝐹𝑐))
5554rnmpt 5980 . . . . . . . . . . . . 13 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
56 abrexfi 9422 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)} ∈ Fin)
5755, 56eqeltrid 2848 . . . . . . . . . . . 12 (𝑠 ∈ Fin → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
5853, 57syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
59 elfpw 9424 . . . . . . . . . . 11 (ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢 ∧ ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin))
6052, 58, 59sylanbrc 582 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin))
6117adantr 480 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹: 𝐽𝑌)
6261fdmd 6757 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝐽)
63 simpll2 1213 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹:𝑋onto𝑌)
64 fof 6834 . . . . . . . . . . . . . 14 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
65 fdm 6756 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
6663, 64, 653syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝑋)
67 simprr 772 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐽 = 𝑠)
6862, 66, 673eqtr3d 2788 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑋 = 𝑠)
6968imaeq2d 6089 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = (𝐹 𝑠))
70 foima 6839 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
7163, 70syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = 𝑌)
7250ralrimiva 3152 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢)
73 dfiun2g 5053 . . . . . . . . . . . . 13 (∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
7472, 73syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
75 imauni 7283 . . . . . . . . . . . 12 (𝐹 𝑠) = 𝑐𝑠 (𝐹𝑐)
7655unieqi 4943 . . . . . . . . . . . 12 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
7774, 75, 763eqtr4g 2805 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹 𝑠) = ran (𝑐𝑠 ↦ (𝐹𝑐)))
7869, 71, 773eqtr3d 2788 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
79 unieq 4942 . . . . . . . . . . 11 (𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)) → 𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
8079rspceeqv 3658 . . . . . . . . . 10 ((ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8160, 78, 80syl2anc 583 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8281expr 456 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8331, 82sylan2b 593 . . . . . . 7 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8483rexlimdva 3161 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8530, 84mpd 15 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8685expr 456 . . . 4 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
873, 86sylan2 592 . . 3 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢 ∈ 𝒫 𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8887ralrimiva 3152 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8915iscmp 23417 . 2 (𝐾 ∈ Comp ↔ (𝐾 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)))
902, 88, 89sylanbrc 582 1 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931   ciun 5015  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  ontowfo 6571  (class class class)co 7448  Fincfn 9003  Topctop 22920   Cn ccn 23253  Compccmp 23415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-top 22921  df-topon 22938  df-cn 23256  df-cmp 23416
This theorem is referenced by:  rncmp  23425  txcmpb  23673  qtopcmp  23737  cmphmph  23817
  Copyright terms: Public domain W3C validator