Step | Hyp | Ref
| Expression |
1 | | cntop2 22392 |
. . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
2 | 1 | 3ad2ant3 1134 |
. 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top) |
3 | | elpwi 4542 |
. . . 4
⊢ (𝑢 ∈ 𝒫 𝐾 → 𝑢 ⊆ 𝐾) |
4 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → 𝐽 ∈ Comp) |
5 | | simpl3 1192 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
6 | | simprl 768 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → 𝑢 ⊆ 𝐾) |
7 | 6 | sselda 3921 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑦 ∈ 𝑢) → 𝑦 ∈ 𝐾) |
8 | | cnima 22416 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ 𝐾) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
9 | 5, 7, 8 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑦 ∈ 𝑢) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
10 | 9 | fmpttd 6989 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)):𝑢⟶𝐽) |
11 | 10 | frnd 6608 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ⊆ 𝐽) |
12 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → 𝑌 = ∪ 𝑢) |
13 | 12 | imaeq2d 5969 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → (◡𝐹 “ 𝑌) = (◡𝐹 “ ∪ 𝑢)) |
14 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
15 | | cncmp.2 |
. . . . . . . . . . 11
⊢ 𝑌 = ∪
𝐾 |
16 | 14, 15 | cnf 22397 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
17 | 5, 16 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → 𝐹:∪ 𝐽⟶𝑌) |
18 | | fimacnv 6622 |
. . . . . . . . 9
⊢ (𝐹:∪
𝐽⟶𝑌 → (◡𝐹 “ 𝑌) = ∪ 𝐽) |
19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → (◡𝐹 “ 𝑌) = ∪ 𝐽) |
20 | 9 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ∀𝑦 ∈ 𝑢 (◡𝐹 “ 𝑦) ∈ 𝐽) |
21 | | dfiun2g 4960 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑢 (◡𝐹 “ 𝑦) ∈ 𝐽 → ∪
𝑦 ∈ 𝑢 (◡𝐹 “ 𝑦) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝑢 𝑥 = (◡𝐹 “ 𝑦)}) |
22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ∪ 𝑦 ∈ 𝑢 (◡𝐹 “ 𝑦) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝑢 𝑥 = (◡𝐹 “ 𝑦)}) |
23 | | imauni 7119 |
. . . . . . . . 9
⊢ (◡𝐹 “ ∪ 𝑢) = ∪ 𝑦 ∈ 𝑢 (◡𝐹 “ 𝑦) |
24 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) = (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) |
25 | 24 | rnmpt 5864 |
. . . . . . . . . 10
⊢ ran
(𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) = {𝑥 ∣ ∃𝑦 ∈ 𝑢 𝑥 = (◡𝐹 “ 𝑦)} |
26 | 25 | unieqi 4852 |
. . . . . . . . 9
⊢ ∪ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝑢 𝑥 = (◡𝐹 “ 𝑦)} |
27 | 22, 23, 26 | 3eqtr4g 2803 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → (◡𝐹 “ ∪ 𝑢) = ∪
ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))) |
28 | 13, 19, 27 | 3eqtr3d 2786 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ∪ 𝐽 =
∪ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))) |
29 | 14 | cmpcov 22540 |
. . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))) → ∃𝑠 ∈ (𝒫 ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∩ Fin)∪
𝐽 = ∪ 𝑠) |
30 | 4, 11, 28, 29 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ∃𝑠 ∈ (𝒫 ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∩ Fin)∪
𝐽 = ∪ 𝑠) |
31 | | elfpw 9121 |
. . . . . . . 8
⊢ (𝑠 ∈ (𝒫 ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∩ Fin) ↔ (𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin)) |
32 | | simprll 776 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → 𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))) |
33 | 32 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈ Comp
∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) ∧ 𝑐 ∈ 𝑠) → 𝑐 ∈ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))) |
34 | | simpll2 1212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑦 ∈ 𝑢) → 𝐹:𝑋–onto→𝑌) |
35 | | elssuni 4871 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝐾 → 𝑦 ⊆ ∪ 𝐾) |
36 | 35, 15 | sseqtrrdi 3972 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝐾 → 𝑦 ⊆ 𝑌) |
37 | 7, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑦 ∈ 𝑢) → 𝑦 ⊆ 𝑌) |
38 | | foimacnv 6733 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
39 | 34, 37, 38 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑦 ∈ 𝑢) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
40 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑦 ∈ 𝑢) → 𝑦 ∈ 𝑢) |
41 | 39, 40 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑦 ∈ 𝑢) → (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝑢) |
42 | 41 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ∀𝑦 ∈ 𝑢 (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝑢) |
43 | | imaeq2 5965 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑐) = (𝐹 “ (◡𝐹 “ 𝑦))) |
44 | 43 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = (◡𝐹 “ 𝑦) → ((𝐹 “ 𝑐) ∈ 𝑢 ↔ (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝑢)) |
45 | 24, 44 | ralrnmptw 6970 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
𝑢 (◡𝐹 “ 𝑦) ∈ 𝐽 → (∀𝑐 ∈ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))(𝐹 “ 𝑐) ∈ 𝑢 ↔ ∀𝑦 ∈ 𝑢 (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝑢)) |
46 | 20, 45 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → (∀𝑐 ∈ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))(𝐹 “ 𝑐) ∈ 𝑢 ↔ ∀𝑦 ∈ 𝑢 (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝑢)) |
47 | 42, 46 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ∀𝑐 ∈ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))(𝐹 “ 𝑐) ∈ 𝑢) |
48 | 47 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ∀𝑐 ∈ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))(𝐹 “ 𝑐) ∈ 𝑢) |
49 | 48 | r19.21bi 3134 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈ Comp
∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) ∧ 𝑐 ∈ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦))) → (𝐹 “ 𝑐) ∈ 𝑢) |
50 | 33, 49 | syldan 591 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈ Comp
∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) ∧ 𝑐 ∈ 𝑠) → (𝐹 “ 𝑐) ∈ 𝑢) |
51 | 50 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)):𝑠⟶𝑢) |
52 | 51 | frnd 6608 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ⊆ 𝑢) |
53 | | simprlr 777 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → 𝑠 ∈ Fin) |
54 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) = (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) |
55 | 54 | rnmpt 5864 |
. . . . . . . . . . . . 13
⊢ ran
(𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) = {𝑑 ∣ ∃𝑐 ∈ 𝑠 𝑑 = (𝐹 “ 𝑐)} |
56 | | abrexfi 9119 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ Fin → {𝑑 ∣ ∃𝑐 ∈ 𝑠 𝑑 = (𝐹 “ 𝑐)} ∈ Fin) |
57 | 55, 56 | eqeltrid 2843 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ Fin → ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ∈ Fin) |
58 | 53, 57 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ∈ Fin) |
59 | | elfpw 9121 |
. . . . . . . . . . 11
⊢ (ran
(𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ⊆ 𝑢 ∧ ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ∈ Fin)) |
60 | 52, 58, 59 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ∈ (𝒫 𝑢 ∩ Fin)) |
61 | 17 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → 𝐹:∪ 𝐽⟶𝑌) |
62 | 61 | fdmd 6611 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → dom 𝐹 = ∪ 𝐽) |
63 | | simpll2 1212 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → 𝐹:𝑋–onto→𝑌) |
64 | | fof 6688 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) |
65 | | fdm 6609 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
66 | 63, 64, 65 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → dom 𝐹 = 𝑋) |
67 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ∪ 𝐽 = ∪
𝑠) |
68 | 62, 66, 67 | 3eqtr3d 2786 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → 𝑋 = ∪ 𝑠) |
69 | 68 | imaeq2d 5969 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → (𝐹 “ 𝑋) = (𝐹 “ ∪ 𝑠)) |
70 | | foima 6693 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–onto→𝑌 → (𝐹 “ 𝑋) = 𝑌) |
71 | 63, 70 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → (𝐹 “ 𝑋) = 𝑌) |
72 | 50 | ralrimiva 3103 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ∀𝑐 ∈ 𝑠 (𝐹 “ 𝑐) ∈ 𝑢) |
73 | | dfiun2g 4960 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
𝑠 (𝐹 “ 𝑐) ∈ 𝑢 → ∪
𝑐 ∈ 𝑠 (𝐹 “ 𝑐) = ∪ {𝑑 ∣ ∃𝑐 ∈ 𝑠 𝑑 = (𝐹 “ 𝑐)}) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ∪
𝑐 ∈ 𝑠 (𝐹 “ 𝑐) = ∪ {𝑑 ∣ ∃𝑐 ∈ 𝑠 𝑑 = (𝐹 “ 𝑐)}) |
75 | | imauni 7119 |
. . . . . . . . . . . 12
⊢ (𝐹 “ ∪ 𝑠) =
∪ 𝑐 ∈ 𝑠 (𝐹 “ 𝑐) |
76 | 55 | unieqi 4852 |
. . . . . . . . . . . 12
⊢ ∪ ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) = ∪ {𝑑 ∣ ∃𝑐 ∈ 𝑠 𝑑 = (𝐹 “ 𝑐)} |
77 | 74, 75, 76 | 3eqtr4g 2803 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → (𝐹 “ ∪ 𝑠) = ∪
ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐))) |
78 | 69, 71, 77 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → 𝑌 = ∪ ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐))) |
79 | | unieq 4850 |
. . . . . . . . . . 11
⊢ (𝑣 = ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) → ∪ 𝑣 = ∪
ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐))) |
80 | 79 | rspceeqv 3575 |
. . . . . . . . . 10
⊢ ((ran
(𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑌 = ∪ ran (𝑐 ∈ 𝑠 ↦ (𝐹 “ 𝑐))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣) |
81 | 60, 78, 80 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin) ∧ ∪ 𝐽 =
∪ 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣) |
82 | 81 | expr 457 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ (𝑠 ⊆ ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∧ 𝑠 ∈ Fin)) → (∪ 𝐽 =
∪ 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣)) |
83 | 31, 82 | sylan2b 594 |
. . . . . . 7
⊢ ((((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) ∧ 𝑠 ∈ (𝒫 ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∩ Fin)) → (∪ 𝐽 =
∪ 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣)) |
84 | 83 | rexlimdva 3213 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → (∃𝑠 ∈ (𝒫 ran (𝑦 ∈ 𝑢 ↦ (◡𝐹 “ 𝑦)) ∩ Fin)∪
𝐽 = ∪ 𝑠
→ ∃𝑣 ∈
(𝒫 𝑢 ∩
Fin)𝑌 = ∪ 𝑣)) |
85 | 30, 84 | mpd 15 |
. . . . 5
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣) |
86 | 85 | expr 457 |
. . . 4
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢 ⊆ 𝐾) → (𝑌 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣)) |
87 | 3, 86 | sylan2 593 |
. . 3
⊢ (((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢 ∈ 𝒫 𝐾) → (𝑌 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣)) |
88 | 87 | ralrimiva 3103 |
. 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 ∈ 𝒫 𝐾(𝑌 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣)) |
89 | 15 | iscmp 22539 |
. 2
⊢ (𝐾 ∈ Comp ↔ (𝐾 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐾(𝑌 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = ∪ 𝑣))) |
90 | 2, 88, 89 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) |