MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmp Structured version   Visualization version   GIF version

Theorem cncmp 21475
Description: Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cncmp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncmp ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)

Proof of Theorem cncmp
Dummy variables 𝑐 𝑑 𝑠 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 21325 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1165 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 elpwi 4325 . . . 4 (𝑢 ∈ 𝒫 𝐾𝑢𝐾)
4 simpl1 1242 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 ∈ Comp)
5 simprl 787 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑢𝐾)
65sselda 3761 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝐾)
7 simpl3 1246 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹 ∈ (𝐽 Cn 𝐾))
8 cnima 21349 . . . . . . . . . . 11 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
97, 8sylan 575 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
106, 9syldan 585 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹𝑦) ∈ 𝐽)
1110fmpttd 6575 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝑦𝑢 ↦ (𝐹𝑦)):𝑢𝐽)
1211frnd 6230 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽)
13 simprr 789 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑌 = 𝑢)
1413imaeq2d 5648 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = (𝐹 𝑢))
15 eqid 2765 . . . . . . . . . . 11 𝐽 = 𝐽
16 cncmp.2 . . . . . . . . . . 11 𝑌 = 𝐾
1715, 16cnf 21330 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
187, 17syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹: 𝐽𝑌)
19 fimacnv 6537 . . . . . . . . 9 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
2018, 19syl 17 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = 𝐽)
2110ralrimiva 3113 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽)
22 dfiun2g 4708 . . . . . . . . . 10 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
2321, 22syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
24 imauni 6696 . . . . . . . . 9 (𝐹 𝑢) = 𝑦𝑢 (𝐹𝑦)
25 eqid 2765 . . . . . . . . . . 11 (𝑦𝑢 ↦ (𝐹𝑦)) = (𝑦𝑢 ↦ (𝐹𝑦))
2625rnmpt 5540 . . . . . . . . . 10 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2726unieqi 4603 . . . . . . . . 9 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2823, 24, 273eqtr4g 2824 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹 𝑢) = ran (𝑦𝑢 ↦ (𝐹𝑦)))
2914, 20, 283eqtr3d 2807 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦)))
3015cmpcov 21472 . . . . . . 7 ((𝐽 ∈ Comp ∧ ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦))) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
314, 12, 29, 30syl3anc 1490 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
32 elfpw 8475 . . . . . . . 8 (𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) ↔ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin))
33 simprll 797 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)))
3433sselda 3761 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦)))
35 simpll2 1271 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝐹:𝑋onto𝑌)
36 elssuni 4625 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐾𝑦 𝐾)
3736, 16syl6sseqr 3812 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐾𝑦𝑌)
386, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑌)
39 foimacnv 6337 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:𝑋onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
4035, 38, 39syl2anc 579 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) = 𝑦)
41 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑢)
4240, 41eqeltrd 2844 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
4342ralrimiva 3113 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
44 imaeq2 5644 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝐹𝑦) → (𝐹𝑐) = (𝐹 “ (𝐹𝑦)))
4544eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝐹𝑦) → ((𝐹𝑐) ∈ 𝑢 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4625, 45ralrnmpt 6558 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4721, 46syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4843, 47mpbird 248 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
4948adantr 472 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
5049r19.21bi 3079 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))) → (𝐹𝑐) ∈ 𝑢)
5134, 50syldan 585 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → (𝐹𝑐) ∈ 𝑢)
5251fmpttd 6575 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝑐𝑠 ↦ (𝐹𝑐)):𝑠𝑢)
5352frnd 6230 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢)
54 simprlr 798 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ∈ Fin)
55 eqid 2765 . . . . . . . . . . . . . 14 (𝑐𝑠 ↦ (𝐹𝑐)) = (𝑐𝑠 ↦ (𝐹𝑐))
5655rnmpt 5540 . . . . . . . . . . . . 13 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
57 abrexfi 8473 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)} ∈ Fin)
5856, 57syl5eqel 2848 . . . . . . . . . . . 12 (𝑠 ∈ Fin → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
5954, 58syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
60 elfpw 8475 . . . . . . . . . . 11 (ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢 ∧ ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin))
6153, 59, 60sylanbrc 578 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin))
6218adantr 472 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹: 𝐽𝑌)
6362fdmd 6232 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝐽)
64 simpll2 1271 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹:𝑋onto𝑌)
65 fof 6298 . . . . . . . . . . . . . 14 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
66 fdm 6231 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
6764, 65, 663syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝑋)
68 simprr 789 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐽 = 𝑠)
6963, 67, 683eqtr3d 2807 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑋 = 𝑠)
7069imaeq2d 5648 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = (𝐹 𝑠))
71 foima 6303 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
7264, 71syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = 𝑌)
7351ralrimiva 3113 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢)
74 dfiun2g 4708 . . . . . . . . . . . . 13 (∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
7573, 74syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
76 imauni 6696 . . . . . . . . . . . 12 (𝐹 𝑠) = 𝑐𝑠 (𝐹𝑐)
7756unieqi 4603 . . . . . . . . . . . 12 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
7875, 76, 773eqtr4g 2824 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹 𝑠) = ran (𝑐𝑠 ↦ (𝐹𝑐)))
7970, 72, 783eqtr3d 2807 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
80 unieq 4602 . . . . . . . . . . 11 (𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)) → 𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
8180rspceeqv 3479 . . . . . . . . . 10 ((ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8261, 79, 81syl2anc 579 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8382expr 448 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8432, 83sylan2b 587 . . . . . . 7 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8584rexlimdva 3178 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8631, 85mpd 15 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8786expr 448 . . . 4 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
883, 87sylan2 586 . . 3 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢 ∈ 𝒫 𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8988ralrimiva 3113 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
9016iscmp 21471 . 2 (𝐾 ∈ Comp ↔ (𝐾 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)))
912, 89, 90sylanbrc 578 1 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  {cab 2751  wral 3055  wrex 3056  cin 3731  wss 3732  𝒫 cpw 4315   cuni 4594   ciun 4676  cmpt 4888  ccnv 5276  dom cdm 5277  ran crn 5278  cima 5280  wf 6064  ontowfo 6066  (class class class)co 6842  Fincfn 8160  Topctop 20977   Cn ccn 21308  Compccmp 21469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-fin 8164  df-top 20978  df-topon 20995  df-cn 21311  df-cmp 21470
This theorem is referenced by:  rncmp  21479  txcmpb  21727  qtopcmp  21791  cmphmph  21871
  Copyright terms: Public domain W3C validator