MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmp Structured version   Visualization version   GIF version

Theorem cncmp 22451
Description: Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cncmp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncmp ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)

Proof of Theorem cncmp
Dummy variables 𝑐 𝑑 𝑠 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 22300 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1133 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 elpwi 4539 . . . 4 (𝑢 ∈ 𝒫 𝐾𝑢𝐾)
4 simpl1 1189 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 ∈ Comp)
5 simpl3 1191 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹 ∈ (𝐽 Cn 𝐾))
6 simprl 767 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑢𝐾)
76sselda 3917 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝐾)
8 cnima 22324 . . . . . . . . . 10 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
95, 7, 8syl2an2r 681 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹𝑦) ∈ 𝐽)
109fmpttd 6971 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝑦𝑢 ↦ (𝐹𝑦)):𝑢𝐽)
1110frnd 6592 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽)
12 simprr 769 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑌 = 𝑢)
1312imaeq2d 5958 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = (𝐹 𝑢))
14 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
15 cncmp.2 . . . . . . . . . . 11 𝑌 = 𝐾
1614, 15cnf 22305 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
175, 16syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹: 𝐽𝑌)
18 fimacnv 6606 . . . . . . . . 9 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
1917, 18syl 17 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = 𝐽)
209ralrimiva 3107 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽)
21 dfiun2g 4957 . . . . . . . . . 10 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
2220, 21syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
23 imauni 7101 . . . . . . . . 9 (𝐹 𝑢) = 𝑦𝑢 (𝐹𝑦)
24 eqid 2738 . . . . . . . . . . 11 (𝑦𝑢 ↦ (𝐹𝑦)) = (𝑦𝑢 ↦ (𝐹𝑦))
2524rnmpt 5853 . . . . . . . . . 10 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2625unieqi 4849 . . . . . . . . 9 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2722, 23, 263eqtr4g 2804 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹 𝑢) = ran (𝑦𝑢 ↦ (𝐹𝑦)))
2813, 19, 273eqtr3d 2786 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦)))
2914cmpcov 22448 . . . . . . 7 ((𝐽 ∈ Comp ∧ ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦))) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
304, 11, 28, 29syl3anc 1369 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
31 elfpw 9051 . . . . . . . 8 (𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) ↔ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin))
32 simprll 775 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)))
3332sselda 3917 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦)))
34 simpll2 1211 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝐹:𝑋onto𝑌)
35 elssuni 4868 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐾𝑦 𝐾)
3635, 15sseqtrrdi 3968 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐾𝑦𝑌)
377, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑌)
38 foimacnv 6717 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:𝑋onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
3934, 37, 38syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) = 𝑦)
40 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑢)
4139, 40eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
4241ralrimiva 3107 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
43 imaeq2 5954 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝐹𝑦) → (𝐹𝑐) = (𝐹 “ (𝐹𝑦)))
4443eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝐹𝑦) → ((𝐹𝑐) ∈ 𝑢 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4524, 44ralrnmptw 6952 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4620, 45syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4742, 46mpbird 256 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
4847adantr 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
4948r19.21bi 3132 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))) → (𝐹𝑐) ∈ 𝑢)
5033, 49syldan 590 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → (𝐹𝑐) ∈ 𝑢)
5150fmpttd 6971 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝑐𝑠 ↦ (𝐹𝑐)):𝑠𝑢)
5251frnd 6592 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢)
53 simprlr 776 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ∈ Fin)
54 eqid 2738 . . . . . . . . . . . . . 14 (𝑐𝑠 ↦ (𝐹𝑐)) = (𝑐𝑠 ↦ (𝐹𝑐))
5554rnmpt 5853 . . . . . . . . . . . . 13 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
56 abrexfi 9049 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)} ∈ Fin)
5755, 56eqeltrid 2843 . . . . . . . . . . . 12 (𝑠 ∈ Fin → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
5853, 57syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
59 elfpw 9051 . . . . . . . . . . 11 (ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢 ∧ ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin))
6052, 58, 59sylanbrc 582 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin))
6117adantr 480 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹: 𝐽𝑌)
6261fdmd 6595 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝐽)
63 simpll2 1211 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹:𝑋onto𝑌)
64 fof 6672 . . . . . . . . . . . . . 14 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
65 fdm 6593 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
6663, 64, 653syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝑋)
67 simprr 769 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐽 = 𝑠)
6862, 66, 673eqtr3d 2786 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑋 = 𝑠)
6968imaeq2d 5958 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = (𝐹 𝑠))
70 foima 6677 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
7163, 70syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = 𝑌)
7250ralrimiva 3107 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢)
73 dfiun2g 4957 . . . . . . . . . . . . 13 (∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
7472, 73syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
75 imauni 7101 . . . . . . . . . . . 12 (𝐹 𝑠) = 𝑐𝑠 (𝐹𝑐)
7655unieqi 4849 . . . . . . . . . . . 12 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
7774, 75, 763eqtr4g 2804 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹 𝑠) = ran (𝑐𝑠 ↦ (𝐹𝑐)))
7869, 71, 773eqtr3d 2786 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
79 unieq 4847 . . . . . . . . . . 11 (𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)) → 𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
8079rspceeqv 3567 . . . . . . . . . 10 ((ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8160, 78, 80syl2anc 583 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8281expr 456 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8331, 82sylan2b 593 . . . . . . 7 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8483rexlimdva 3212 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8530, 84mpd 15 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8685expr 456 . . . 4 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
873, 86sylan2 592 . . 3 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢 ∈ 𝒫 𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8887ralrimiva 3107 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8915iscmp 22447 . 2 (𝐾 ∈ Comp ↔ (𝐾 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)))
902, 88, 89sylanbrc 582 1 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836   ciun 4921  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  wf 6414  ontowfo 6416  (class class class)co 7255  Fincfn 8691  Topctop 21950   Cn ccn 22283  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-fin 8695  df-top 21951  df-topon 21968  df-cn 22286  df-cmp 22446
This theorem is referenced by:  rncmp  22455  txcmpb  22703  qtopcmp  22767  cmphmph  22847
  Copyright terms: Public domain W3C validator