MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmp Structured version   Visualization version   GIF version

Theorem cncmp 23326
Description: Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cncmp.2 𝑌 = 𝐾
Assertion
Ref Expression
cncmp ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)

Proof of Theorem cncmp
Dummy variables 𝑐 𝑑 𝑠 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 23175 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1132 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 elpwi 4610 . . . 4 (𝑢 ∈ 𝒫 𝐾𝑢𝐾)
4 simpl1 1188 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 ∈ Comp)
5 simpl3 1190 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹 ∈ (𝐽 Cn 𝐾))
6 simprl 769 . . . . . . . . . . 11 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑢𝐾)
76sselda 3977 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝐾)
8 cnima 23199 . . . . . . . . . 10 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
95, 7, 8syl2an2r 683 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹𝑦) ∈ 𝐽)
109fmpttd 7122 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝑦𝑢 ↦ (𝐹𝑦)):𝑢𝐽)
1110frnd 6729 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽)
12 simprr 771 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑌 = 𝑢)
1312imaeq2d 6063 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = (𝐹 𝑢))
14 eqid 2725 . . . . . . . . . . 11 𝐽 = 𝐽
15 cncmp.2 . . . . . . . . . . 11 𝑌 = 𝐾
1614, 15cnf 23180 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
175, 16syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐹: 𝐽𝑌)
18 fimacnv 6743 . . . . . . . . 9 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
1917, 18syl 17 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹𝑌) = 𝐽)
209ralrimiva 3136 . . . . . . . . . 10 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽)
21 dfiun2g 5033 . . . . . . . . . 10 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
2220, 21syl 17 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝑦𝑢 (𝐹𝑦) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)})
23 imauni 7254 . . . . . . . . 9 (𝐹 𝑢) = 𝑦𝑢 (𝐹𝑦)
24 eqid 2725 . . . . . . . . . . 11 (𝑦𝑢 ↦ (𝐹𝑦)) = (𝑦𝑢 ↦ (𝐹𝑦))
2524rnmpt 5956 . . . . . . . . . 10 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2625unieqi 4920 . . . . . . . . 9 ran (𝑦𝑢 ↦ (𝐹𝑦)) = {𝑥 ∣ ∃𝑦𝑢 𝑥 = (𝐹𝑦)}
2722, 23, 263eqtr4g 2790 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (𝐹 𝑢) = ran (𝑦𝑢 ↦ (𝐹𝑦)))
2813, 19, 273eqtr3d 2773 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦)))
2914cmpcov 23323 . . . . . . 7 ((𝐽 ∈ Comp ∧ ran (𝑦𝑢 ↦ (𝐹𝑦)) ⊆ 𝐽 𝐽 = ran (𝑦𝑢 ↦ (𝐹𝑦))) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
304, 11, 28, 29syl3anc 1368 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠)
31 elfpw 9378 . . . . . . . 8 (𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) ↔ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin))
32 simprll 777 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)))
3332sselda 3977 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦)))
34 simpll2 1210 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝐹:𝑋onto𝑌)
35 elssuni 4940 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐾𝑦 𝐾)
3635, 15sseqtrrdi 4029 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐾𝑦𝑌)
377, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑌)
38 foimacnv 6853 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:𝑋onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
3934, 37, 38syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) = 𝑦)
40 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → 𝑦𝑢)
4139, 40eqeltrd 2825 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑦𝑢) → (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
4241ralrimiva 3136 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢)
43 imaeq2 6059 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝐹𝑦) → (𝐹𝑐) = (𝐹 “ (𝐹𝑦)))
4443eleq1d 2810 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝐹𝑦) → ((𝐹𝑐) ∈ 𝑢 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4524, 44ralrnmptw 7101 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑢 (𝐹𝑦) ∈ 𝐽 → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4620, 45syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢 ↔ ∀𝑦𝑢 (𝐹 “ (𝐹𝑦)) ∈ 𝑢))
4742, 46mpbird 256 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
4847adantr 479 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))(𝐹𝑐) ∈ 𝑢)
4948r19.21bi 3239 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐 ∈ ran (𝑦𝑢 ↦ (𝐹𝑦))) → (𝐹𝑐) ∈ 𝑢)
5033, 49syldan 589 . . . . . . . . . . . . 13 (((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) ∧ 𝑐𝑠) → (𝐹𝑐) ∈ 𝑢)
5150fmpttd 7122 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝑐𝑠 ↦ (𝐹𝑐)):𝑠𝑢)
5251frnd 6729 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢)
53 simprlr 778 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑠 ∈ Fin)
54 eqid 2725 . . . . . . . . . . . . . 14 (𝑐𝑠 ↦ (𝐹𝑐)) = (𝑐𝑠 ↦ (𝐹𝑐))
5554rnmpt 5956 . . . . . . . . . . . . 13 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
56 abrexfi 9376 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)} ∈ Fin)
5755, 56eqeltrid 2829 . . . . . . . . . . . 12 (𝑠 ∈ Fin → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
5853, 57syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin)
59 elfpw 9378 . . . . . . . . . . 11 (ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran (𝑐𝑠 ↦ (𝐹𝑐)) ⊆ 𝑢 ∧ ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ Fin))
6052, 58, 59sylanbrc 581 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin))
6117adantr 479 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹: 𝐽𝑌)
6261fdmd 6731 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝐽)
63 simpll2 1210 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐹:𝑋onto𝑌)
64 fof 6808 . . . . . . . . . . . . . 14 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
65 fdm 6730 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
6663, 64, 653syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → dom 𝐹 = 𝑋)
67 simprr 771 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝐽 = 𝑠)
6862, 66, 673eqtr3d 2773 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑋 = 𝑠)
6968imaeq2d 6063 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = (𝐹 𝑠))
70 foima 6813 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
7163, 70syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹𝑋) = 𝑌)
7250ralrimiva 3136 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢)
73 dfiun2g 5033 . . . . . . . . . . . . 13 (∀𝑐𝑠 (𝐹𝑐) ∈ 𝑢 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
7472, 73syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑐𝑠 (𝐹𝑐) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)})
75 imauni 7254 . . . . . . . . . . . 12 (𝐹 𝑠) = 𝑐𝑠 (𝐹𝑐)
7655unieqi 4920 . . . . . . . . . . . 12 ran (𝑐𝑠 ↦ (𝐹𝑐)) = {𝑑 ∣ ∃𝑐𝑠 𝑑 = (𝐹𝑐)}
7774, 75, 763eqtr4g 2790 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → (𝐹 𝑠) = ran (𝑐𝑠 ↦ (𝐹𝑐)))
7869, 71, 773eqtr3d 2773 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
79 unieq 4919 . . . . . . . . . . 11 (𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)) → 𝑣 = ran (𝑐𝑠 ↦ (𝐹𝑐)))
8079rspceeqv 3629 . . . . . . . . . 10 ((ran (𝑐𝑠 ↦ (𝐹𝑐)) ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑌 = ran (𝑐𝑠 ↦ (𝐹𝑐))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8160, 78, 80syl2anc 582 . . . . . . . . 9 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ ((𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin) ∧ 𝐽 = 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8281expr 455 . . . . . . . 8 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ (𝑠 ⊆ ran (𝑦𝑢 ↦ (𝐹𝑦)) ∧ 𝑠 ∈ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8331, 82sylan2b 592 . . . . . . 7 ((((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) ∧ 𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin)) → ( 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8483rexlimdva 3145 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → (∃𝑠 ∈ (𝒫 ran (𝑦𝑢 ↦ (𝐹𝑦)) ∩ Fin) 𝐽 = 𝑠 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8530, 84mpd 15 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑢𝐾𝑌 = 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)
8685expr 455 . . . 4 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
873, 86sylan2 591 . . 3 (((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑢 ∈ 𝒫 𝐾) → (𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8887ralrimiva 3136 . 2 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣))
8915iscmp 23322 . 2 (𝐾 ∈ Comp ↔ (𝐾 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐾(𝑌 = 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑌 = 𝑣)))
902, 88, 89sylanbrc 581 1 ((𝐽 ∈ Comp ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wral 3051  wrex 3060  cin 3944  wss 3945  𝒫 cpw 4603   cuni 4908   ciun 4996  cmpt 5231  ccnv 5676  dom cdm 5677  ran crn 5678  cima 5680  wf 6543  ontowfo 6545  (class class class)co 7417  Fincfn 8962  Topctop 22825   Cn ccn 23158  Compccmp 23320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-1o 8485  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-fin 8966  df-top 22826  df-topon 22843  df-cn 23161  df-cmp 23321
This theorem is referenced by:  rncmp  23330  txcmpb  23578  qtopcmp  23642  cmphmph  23722
  Copyright terms: Public domain W3C validator