MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubb Structured version   Visualization version   GIF version

Theorem alexsubb 23933
Description: Biconditional form of the Alexander Subbase Theorem alexsub 23932. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
alexsubb ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑋,𝑦

Proof of Theorem alexsubb
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (topGen‘(fi‘𝐵)) = (topGen‘(fi‘𝐵))
21iscmp 23275 . . . 4 ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ((topGen‘(fi‘𝐵)) ∈ Top ∧ ∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦)))
32simprbi 496 . . 3 ((topGen‘(fi‘𝐵)) ∈ Comp → ∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦))
4 simpr 484 . . . . . . . . . . 11 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵)
5 elex 3468 . . . . . . . . . . . 12 (𝑋 ∈ UFL → 𝑋 ∈ V)
65adantr 480 . . . . . . . . . . 11 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝑋 ∈ V)
74, 6eqeltrrd 2829 . . . . . . . . . 10 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ∈ V)
8 uniexb 7740 . . . . . . . . . 10 (𝐵 ∈ V ↔ 𝐵 ∈ V)
97, 8sylibr 234 . . . . . . . . 9 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ∈ V)
10 fiuni 9379 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 = (fi‘𝐵))
119, 10syl 17 . . . . . . . 8 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 = (fi‘𝐵))
12 fibas 22864 . . . . . . . . 9 (fi‘𝐵) ∈ TopBases
13 unitg 22854 . . . . . . . . 9 ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) = (fi‘𝐵))
1412, 13mp1i 13 . . . . . . . 8 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (topGen‘(fi‘𝐵)) = (fi‘𝐵))
1511, 4, 143eqtr4d 2774 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝑋 = (topGen‘(fi‘𝐵)))
1615eqeq1d 2731 . . . . . 6 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (𝑋 = 𝑥 (topGen‘(fi‘𝐵)) = 𝑥))
1715eqeq1d 2731 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (𝑋 = 𝑦 (topGen‘(fi‘𝐵)) = 𝑦))
1817rexbidv 3157 . . . . . 6 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦))
1916, 18imbi12d 344 . . . . 5 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦)))
2019ralbidv 3156 . . . 4 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦)))
21 ssfii 9370 . . . . . . . 8 (𝐵 ∈ V → 𝐵 ⊆ (fi‘𝐵))
229, 21syl 17 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (fi‘𝐵))
23 bastg 22853 . . . . . . . 8 ((fi‘𝐵) ∈ TopBases → (fi‘𝐵) ⊆ (topGen‘(fi‘𝐵)))
2412, 23ax-mp 5 . . . . . . 7 (fi‘𝐵) ⊆ (topGen‘(fi‘𝐵))
2522, 24sstrdi 3959 . . . . . 6 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (topGen‘(fi‘𝐵)))
2625sspwd 4576 . . . . 5 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝒫 𝐵 ⊆ 𝒫 (topGen‘(fi‘𝐵)))
27 ssralv 4015 . . . . 5 (𝒫 𝐵 ⊆ 𝒫 (topGen‘(fi‘𝐵)) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
2826, 27syl 17 . . . 4 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
2920, 28sylbird 260 . . 3 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦) → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
303, 29syl5 34 . 2 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
31 simpll 766 . . . 4 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → 𝑋 ∈ UFL)
32 simplr 768 . . . 4 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → 𝑋 = 𝐵)
33 eqidd 2730 . . . 4 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (topGen‘(fi‘𝐵)) = (topGen‘(fi‘𝐵)))
34 velpw 4568 . . . . . . 7 (𝑧 ∈ 𝒫 𝐵𝑧𝐵)
35 unieq 4882 . . . . . . . . . . 11 (𝑥 = 𝑧 𝑥 = 𝑧)
3635eqeq2d 2740 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑋 = 𝑥𝑋 = 𝑧))
37 pweq 4577 . . . . . . . . . . . 12 (𝑥 = 𝑧 → 𝒫 𝑥 = 𝒫 𝑧)
3837ineq1d 4182 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝑧 ∩ Fin))
3938rexeqdv 3300 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦))
4036, 39imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4140rspccv 3585 . . . . . . . 8 (∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → (𝑧 ∈ 𝒫 𝐵 → (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4241adantl 481 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (𝑧 ∈ 𝒫 𝐵 → (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4334, 42biimtrrid 243 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (𝑧𝐵 → (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4443imp32 418 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) ∧ (𝑧𝐵𝑋 = 𝑧)) → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)
45 unieq 4882 . . . . . . 7 (𝑦 = 𝑤 𝑦 = 𝑤)
4645eqeq2d 2740 . . . . . 6 (𝑦 = 𝑤 → (𝑋 = 𝑦𝑋 = 𝑤))
4746cbvrexvw 3216 . . . . 5 (∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑤 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑤)
4844, 47sylib 218 . . . 4 ((((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) ∧ (𝑧𝐵𝑋 = 𝑧)) → ∃𝑤 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑤)
4931, 32, 33, 48alexsub 23932 . . 3 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (topGen‘(fi‘𝐵)) ∈ Comp)
5049ex 412 . 2 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → (topGen‘(fi‘𝐵)) ∈ Comp))
5130, 50impbid 212 1 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871  cfv 6511  Fincfn 8918  ficfi 9361  topGenctg 17400  Topctop 22780  TopBasesctb 22832  Compccmp 23273  UFLcufl 23787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-topgen 17406  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cmp 23274  df-fil 23733  df-ufil 23788  df-ufl 23789  df-flim 23826  df-fcls 23828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator