Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubb Structured version   Visualization version   GIF version

Theorem alexsubb 22654
 Description: Biconditional form of the Alexander Subbase Theorem alexsub 22653. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
alexsubb ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑋,𝑦

Proof of Theorem alexsubb
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (topGen‘(fi‘𝐵)) = (topGen‘(fi‘𝐵))
21iscmp 21996 . . . 4 ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ((topGen‘(fi‘𝐵)) ∈ Top ∧ ∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦)))
32simprbi 500 . . 3 ((topGen‘(fi‘𝐵)) ∈ Comp → ∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦))
4 simpr 488 . . . . . . . . . . 11 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝑋 = 𝐵)
5 elex 3498 . . . . . . . . . . . 12 (𝑋 ∈ UFL → 𝑋 ∈ V)
65adantr 484 . . . . . . . . . . 11 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝑋 ∈ V)
74, 6eqeltrrd 2917 . . . . . . . . . 10 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ∈ V)
8 uniexb 7480 . . . . . . . . . 10 (𝐵 ∈ V ↔ 𝐵 ∈ V)
97, 8sylibr 237 . . . . . . . . 9 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ∈ V)
10 fiuni 8889 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 = (fi‘𝐵))
119, 10syl 17 . . . . . . . 8 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 = (fi‘𝐵))
12 fibas 21585 . . . . . . . . 9 (fi‘𝐵) ∈ TopBases
13 unitg 21575 . . . . . . . . 9 ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) = (fi‘𝐵))
1412, 13mp1i 13 . . . . . . . 8 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (topGen‘(fi‘𝐵)) = (fi‘𝐵))
1511, 4, 143eqtr4d 2869 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝑋 = (topGen‘(fi‘𝐵)))
1615eqeq1d 2826 . . . . . 6 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (𝑋 = 𝑥 (topGen‘(fi‘𝐵)) = 𝑥))
1715eqeq1d 2826 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (𝑋 = 𝑦 (topGen‘(fi‘𝐵)) = 𝑦))
1817rexbidv 3289 . . . . . 6 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦))
1916, 18imbi12d 348 . . . . 5 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦)))
2019ralbidv 3192 . . . 4 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦)))
21 ssfii 8880 . . . . . . . 8 (𝐵 ∈ V → 𝐵 ⊆ (fi‘𝐵))
229, 21syl 17 . . . . . . 7 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (fi‘𝐵))
23 bastg 21574 . . . . . . . 8 ((fi‘𝐵) ∈ TopBases → (fi‘𝐵) ⊆ (topGen‘(fi‘𝐵)))
2412, 23ax-mp 5 . . . . . . 7 (fi‘𝐵) ⊆ (topGen‘(fi‘𝐵))
2522, 24sstrdi 3965 . . . . . 6 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝐵 ⊆ (topGen‘(fi‘𝐵)))
2625sspwd 4537 . . . . 5 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → 𝒫 𝐵 ⊆ 𝒫 (topGen‘(fi‘𝐵)))
27 ssralv 4019 . . . . 5 (𝒫 𝐵 ⊆ 𝒫 (topGen‘(fi‘𝐵)) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
2826, 27syl 17 . . . 4 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
2920, 28sylbird 263 . . 3 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 (topGen‘(fi‘𝐵))( (topGen‘(fi‘𝐵)) = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin) (topGen‘(fi‘𝐵)) = 𝑦) → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
303, 29syl5 34 . 2 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp → ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
31 simpll 766 . . . 4 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → 𝑋 ∈ UFL)
32 simplr 768 . . . 4 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → 𝑋 = 𝐵)
33 eqidd 2825 . . . 4 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (topGen‘(fi‘𝐵)) = (topGen‘(fi‘𝐵)))
34 velpw 4527 . . . . . . 7 (𝑧 ∈ 𝒫 𝐵𝑧𝐵)
35 unieq 4835 . . . . . . . . . . 11 (𝑥 = 𝑧 𝑥 = 𝑧)
3635eqeq2d 2835 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑋 = 𝑥𝑋 = 𝑧))
37 pweq 4538 . . . . . . . . . . . 12 (𝑥 = 𝑧 → 𝒫 𝑥 = 𝒫 𝑧)
3837ineq1d 4173 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝒫 𝑥 ∩ Fin) = (𝒫 𝑧 ∩ Fin))
3938rexeqdv 3403 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦))
4036, 39imbi12d 348 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4140rspccv 3606 . . . . . . . 8 (∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → (𝑧 ∈ 𝒫 𝐵 → (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4241adantl 485 . . . . . . 7 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (𝑧 ∈ 𝒫 𝐵 → (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4334, 42syl5bir 246 . . . . . 6 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (𝑧𝐵 → (𝑋 = 𝑧 → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)))
4443imp32 422 . . . . 5 ((((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) ∧ (𝑧𝐵𝑋 = 𝑧)) → ∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦)
45 unieq 4835 . . . . . . 7 (𝑦 = 𝑤 𝑦 = 𝑤)
4645eqeq2d 2835 . . . . . 6 (𝑦 = 𝑤 → (𝑋 = 𝑦𝑋 = 𝑤))
4746cbvrexvw 3435 . . . . 5 (∃𝑦 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑤 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑤)
4844, 47sylib 221 . . . 4 ((((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) ∧ (𝑧𝐵𝑋 = 𝑧)) → ∃𝑤 ∈ (𝒫 𝑧 ∩ Fin)𝑋 = 𝑤)
4931, 32, 33, 48alexsub 22653 . . 3 (((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) ∧ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)) → (topGen‘(fi‘𝐵)) ∈ Comp)
5049ex 416 . 2 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → (∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) → (topGen‘(fi‘𝐵)) ∈ Comp))
5130, 50impbid 215 1 ((𝑋 ∈ UFL ∧ 𝑋 = 𝐵) → ((topGen‘(fi‘𝐵)) ∈ Comp ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑋 = 𝑥 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃wrex 3134  Vcvv 3480   ∩ cin 3918   ⊆ wss 3919  𝒫 cpw 4522  ∪ cuni 4824  ‘cfv 6343  Fincfn 8505  ficfi 8871  topGenctg 16711  Topctop 21501  TopBasesctb 21553  Compccmp 21994  UFLcufl 22508 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fi 8872  df-topgen 16717  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-cmp 21995  df-fil 22454  df-ufil 22509  df-ufl 22510  df-flim 22547  df-fcls 22549 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator