![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version |
Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscmp 23411 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ∩ cin 3961 𝒫 cpw 4604 ∪ cuni 4911 Fincfn 8983 Topctop 22914 Compccmp 23409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-ss 3979 df-pw 4606 df-uni 4912 df-cmp 23410 |
This theorem is referenced by: imacmp 23420 cmpcld 23425 fiuncmp 23427 cmpfii 23432 bwth 23433 locfincmp 23549 kgeni 23560 kgentopon 23561 kgencmp 23568 kgencmp2 23569 cmpkgen 23574 txcmplem1 23664 txcmp 23666 qtopcmp 23731 cmphaushmeo 23823 ptcmpfi 23836 fclscmpi 24052 alexsubALTlem1 24070 ptcmplem1 24075 ptcmpg 24080 evth 25004 evth2 25005 cmppcmp 33818 ordcmp 36429 poimirlem30 37636 heibor1lem 37795 cmpfiiin 42684 kelac1 43051 kelac2 43053 stoweidlem28 45983 stoweidlem50 46005 stoweidlem53 46008 stoweidlem57 46012 stoweidlem62 46017 |
Copyright terms: Public domain | W3C validator |