MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmptop Structured version   Visualization version   GIF version

Theorem cmptop 23311
Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.)
Assertion
Ref Expression
cmptop (𝐽 ∈ Comp → 𝐽 ∈ Top)

Proof of Theorem cmptop
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 𝐽 = 𝐽
21iscmp 23304 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑠)))
32simplbi 497 1 (𝐽 ∈ Comp → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cin 3897  𝒫 cpw 4549   cuni 4858  Fincfn 8875  Topctop 22809  Compccmp 23302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-ss 3915  df-pw 4551  df-uni 4859  df-cmp 23303
This theorem is referenced by:  imacmp  23313  cmpcld  23318  fiuncmp  23320  cmpfii  23325  bwth  23326  locfincmp  23442  kgeni  23453  kgentopon  23454  kgencmp  23461  kgencmp2  23462  cmpkgen  23467  txcmplem1  23557  txcmp  23559  qtopcmp  23624  cmphaushmeo  23716  ptcmpfi  23729  fclscmpi  23945  alexsubALTlem1  23963  ptcmplem1  23968  ptcmpg  23973  evth  24886  evth2  24887  cmppcmp  33892  ordcmp  36512  poimirlem30  37710  heibor1lem  37869  cmpfiiin  42814  kelac1  43180  kelac2  43182  stoweidlem28  46150  stoweidlem50  46172  stoweidlem53  46175  stoweidlem57  46179  stoweidlem62  46184
  Copyright terms: Public domain W3C validator