Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version |
Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscmp 22447 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 𝒫 cpw 4530 ∪ cuni 4836 Fincfn 8691 Topctop 21950 Compccmp 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-cmp 22446 |
This theorem is referenced by: imacmp 22456 cmpcld 22461 fiuncmp 22463 cmpfii 22468 bwth 22469 locfincmp 22585 kgeni 22596 kgentopon 22597 kgencmp 22604 kgencmp2 22605 cmpkgen 22610 txcmplem1 22700 txcmp 22702 qtopcmp 22767 cmphaushmeo 22859 ptcmpfi 22872 fclscmpi 23088 alexsubALTlem1 23106 ptcmplem1 23111 ptcmpg 23116 evth 24028 evth2 24029 cmppcmp 31710 ordcmp 34563 poimirlem30 35734 heibor1lem 35894 cmpfiiin 40435 kelac1 40804 kelac2 40806 stoweidlem28 43459 stoweidlem50 43481 stoweidlem53 43484 stoweidlem57 43488 stoweidlem62 43493 |
Copyright terms: Public domain | W3C validator |