![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version |
Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscmp 23417 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 𝒫 cpw 4622 ∪ cuni 4931 Fincfn 9003 Topctop 22920 Compccmp 23415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 df-cmp 23416 |
This theorem is referenced by: imacmp 23426 cmpcld 23431 fiuncmp 23433 cmpfii 23438 bwth 23439 locfincmp 23555 kgeni 23566 kgentopon 23567 kgencmp 23574 kgencmp2 23575 cmpkgen 23580 txcmplem1 23670 txcmp 23672 qtopcmp 23737 cmphaushmeo 23829 ptcmpfi 23842 fclscmpi 24058 alexsubALTlem1 24076 ptcmplem1 24081 ptcmpg 24086 evth 25010 evth2 25011 cmppcmp 33804 ordcmp 36413 poimirlem30 37610 heibor1lem 37769 cmpfiiin 42653 kelac1 43020 kelac2 43022 stoweidlem28 45949 stoweidlem50 45971 stoweidlem53 45974 stoweidlem57 45978 stoweidlem62 45983 |
Copyright terms: Public domain | W3C validator |