| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version | ||
| Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| Ref | Expression |
|---|---|
| cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23304 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 𝒫 cpw 4549 ∪ cuni 4858 Fincfn 8875 Topctop 22809 Compccmp 23302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-ss 3915 df-pw 4551 df-uni 4859 df-cmp 23303 |
| This theorem is referenced by: imacmp 23313 cmpcld 23318 fiuncmp 23320 cmpfii 23325 bwth 23326 locfincmp 23442 kgeni 23453 kgentopon 23454 kgencmp 23461 kgencmp2 23462 cmpkgen 23467 txcmplem1 23557 txcmp 23559 qtopcmp 23624 cmphaushmeo 23716 ptcmpfi 23729 fclscmpi 23945 alexsubALTlem1 23963 ptcmplem1 23968 ptcmpg 23973 evth 24886 evth2 24887 cmppcmp 33892 ordcmp 36512 poimirlem30 37710 heibor1lem 37869 cmpfiiin 42814 kelac1 43180 kelac2 43182 stoweidlem28 46150 stoweidlem50 46172 stoweidlem53 46175 stoweidlem57 46179 stoweidlem62 46184 |
| Copyright terms: Public domain | W3C validator |