| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version | ||
| Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| Ref | Expression |
|---|---|
| cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23291 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3904 𝒫 cpw 4553 ∪ cuni 4861 Fincfn 8879 Topctop 22796 Compccmp 23289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-ss 3922 df-pw 4555 df-uni 4862 df-cmp 23290 |
| This theorem is referenced by: imacmp 23300 cmpcld 23305 fiuncmp 23307 cmpfii 23312 bwth 23313 locfincmp 23429 kgeni 23440 kgentopon 23441 kgencmp 23448 kgencmp2 23449 cmpkgen 23454 txcmplem1 23544 txcmp 23546 qtopcmp 23611 cmphaushmeo 23703 ptcmpfi 23716 fclscmpi 23932 alexsubALTlem1 23950 ptcmplem1 23955 ptcmpg 23960 evth 24874 evth2 24875 cmppcmp 33824 ordcmp 36420 poimirlem30 37629 heibor1lem 37788 cmpfiiin 42670 kelac1 43036 kelac2 43038 stoweidlem28 46010 stoweidlem50 46032 stoweidlem53 46035 stoweidlem57 46039 stoweidlem62 46044 |
| Copyright terms: Public domain | W3C validator |