| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version | ||
| Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| Ref | Expression |
|---|---|
| cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23275 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 𝒫 cpw 4563 ∪ cuni 4871 Fincfn 8918 Topctop 22780 Compccmp 23273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-pw 4565 df-uni 4872 df-cmp 23274 |
| This theorem is referenced by: imacmp 23284 cmpcld 23289 fiuncmp 23291 cmpfii 23296 bwth 23297 locfincmp 23413 kgeni 23424 kgentopon 23425 kgencmp 23432 kgencmp2 23433 cmpkgen 23438 txcmplem1 23528 txcmp 23530 qtopcmp 23595 cmphaushmeo 23687 ptcmpfi 23700 fclscmpi 23916 alexsubALTlem1 23934 ptcmplem1 23939 ptcmpg 23944 evth 24858 evth2 24859 cmppcmp 33848 ordcmp 36435 poimirlem30 37644 heibor1lem 37803 cmpfiiin 42685 kelac1 43052 kelac2 43054 stoweidlem28 46026 stoweidlem50 46048 stoweidlem53 46051 stoweidlem57 46055 stoweidlem62 46060 |
| Copyright terms: Public domain | W3C validator |