| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version | ||
| Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| Ref | Expression |
|---|---|
| cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23282 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∩ cin 3916 𝒫 cpw 4566 ∪ cuni 4874 Fincfn 8921 Topctop 22787 Compccmp 23280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-ss 3934 df-pw 4568 df-uni 4875 df-cmp 23281 |
| This theorem is referenced by: imacmp 23291 cmpcld 23296 fiuncmp 23298 cmpfii 23303 bwth 23304 locfincmp 23420 kgeni 23431 kgentopon 23432 kgencmp 23439 kgencmp2 23440 cmpkgen 23445 txcmplem1 23535 txcmp 23537 qtopcmp 23602 cmphaushmeo 23694 ptcmpfi 23707 fclscmpi 23923 alexsubALTlem1 23941 ptcmplem1 23946 ptcmpg 23951 evth 24865 evth2 24866 cmppcmp 33855 ordcmp 36442 poimirlem30 37651 heibor1lem 37810 cmpfiiin 42692 kelac1 43059 kelac2 43061 stoweidlem28 46033 stoweidlem50 46055 stoweidlem53 46058 stoweidlem57 46062 stoweidlem62 46067 |
| Copyright terms: Public domain | W3C validator |