| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version | ||
| Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| Ref | Expression |
|---|---|
| cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23326 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∩ cin 3925 𝒫 cpw 4575 ∪ cuni 4883 Fincfn 8959 Topctop 22831 Compccmp 23324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-ss 3943 df-pw 4577 df-uni 4884 df-cmp 23325 |
| This theorem is referenced by: imacmp 23335 cmpcld 23340 fiuncmp 23342 cmpfii 23347 bwth 23348 locfincmp 23464 kgeni 23475 kgentopon 23476 kgencmp 23483 kgencmp2 23484 cmpkgen 23489 txcmplem1 23579 txcmp 23581 qtopcmp 23646 cmphaushmeo 23738 ptcmpfi 23751 fclscmpi 23967 alexsubALTlem1 23985 ptcmplem1 23990 ptcmpg 23995 evth 24909 evth2 24910 cmppcmp 33889 ordcmp 36465 poimirlem30 37674 heibor1lem 37833 cmpfiiin 42720 kelac1 43087 kelac2 43089 stoweidlem28 46057 stoweidlem50 46079 stoweidlem53 46082 stoweidlem57 46086 stoweidlem62 46091 |
| Copyright terms: Public domain | W3C validator |