| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version | ||
| Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| Ref | Expression |
|---|---|
| cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23301 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 𝒫 cpw 4550 ∪ cuni 4859 Fincfn 8869 Topctop 22806 Compccmp 23299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-ss 3919 df-pw 4552 df-uni 4860 df-cmp 23300 |
| This theorem is referenced by: imacmp 23310 cmpcld 23315 fiuncmp 23317 cmpfii 23322 bwth 23323 locfincmp 23439 kgeni 23450 kgentopon 23451 kgencmp 23458 kgencmp2 23459 cmpkgen 23464 txcmplem1 23554 txcmp 23556 qtopcmp 23621 cmphaushmeo 23713 ptcmpfi 23726 fclscmpi 23942 alexsubALTlem1 23960 ptcmplem1 23965 ptcmpg 23970 evth 24883 evth2 24884 cmppcmp 33866 ordcmp 36480 poimirlem30 37689 heibor1lem 37848 cmpfiiin 42729 kelac1 43095 kelac2 43097 stoweidlem28 46065 stoweidlem50 46087 stoweidlem53 46090 stoweidlem57 46094 stoweidlem62 46099 |
| Copyright terms: Public domain | W3C validator |