| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfsuppd | Structured version Visualization version GIF version | ||
| Description: Deduction form of isfsupp 9316. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
| isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
| Ref | Expression |
|---|---|
| isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
| 2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
| 3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 5 | isfsupp 9316 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 Fun wfun 6505 (class class class)co 7387 supp csupp 8139 Fincfn 8918 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-fsupp 9313 |
| This theorem is referenced by: mhpmulcl 22036 psdmplcl 22049 mptiffisupp 32616 elrgspnlem2 33194 elrgspnlem4 33196 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 elrspunsn 33400 selvvvval 42573 evlselvlem 42574 evlselv 42575 |
| Copyright terms: Public domain | W3C validator |