Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfsuppd | Structured version Visualization version GIF version |
Description: Deduction form of isfsupp 9208. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
Ref | Expression |
---|---|
isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
5 | isfsupp 9208 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
7 | 1, 2, 6 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 class class class wbr 5086 Fun wfun 6459 (class class class)co 7316 supp csupp 8025 Fincfn 8782 finSupp cfsupp 9204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-rel 5614 df-cnv 5615 df-co 5616 df-iota 6417 df-fun 6467 df-fv 6473 df-ov 7319 df-fsupp 9205 |
This theorem is referenced by: evlsbagval 40496 mhphf 40506 |
Copyright terms: Public domain | W3C validator |