Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfsuppd | Structured version Visualization version GIF version |
Description: Deduction form of isfsupp 9062. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
Ref | Expression |
---|---|
isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
5 | isfsupp 9062 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
7 | 1, 2, 6 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 Fun wfun 6412 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-fsupp 9059 |
This theorem is referenced by: evlsbagval 40198 mhphf 40208 |
Copyright terms: Public domain | W3C validator |