Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfsuppd Structured version   Visualization version   GIF version

Theorem isfsuppd 40143
Description: Deduction form of isfsupp 9062. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
isfsuppd.r (𝜑𝑅𝑉)
isfsuppd.z (𝜑𝑍𝑊)
isfsuppd.1 (𝜑 → Fun 𝑅)
isfsuppd.2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
isfsuppd (𝜑𝑅 finSupp 𝑍)

Proof of Theorem isfsuppd
StepHypRef Expression
1 isfsuppd.1 . 2 (𝜑 → Fun 𝑅)
2 isfsuppd.2 . 2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
3 isfsuppd.r . . 3 (𝜑𝑅𝑉)
4 isfsuppd.z . . 3 (𝜑𝑍𝑊)
5 isfsupp 9062 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
63, 4, 5syl2anc 583 . 2 (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
71, 2, 6mpbir2and 709 1 (𝜑𝑅 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070  Fun wfun 6412  (class class class)co 7255   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-fsupp 9059
This theorem is referenced by:  evlsbagval  40198  mhphf  40208
  Copyright terms: Public domain W3C validator