| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfsuppd | Structured version Visualization version GIF version | ||
| Description: Deduction form of isfsupp 9255. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
| isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
| Ref | Expression |
|---|---|
| isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
| 2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
| 3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 5 | isfsupp 9255 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 Fun wfun 6476 (class class class)co 7349 supp csupp 8093 Fincfn 8872 finSupp cfsupp 9251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-rel 5626 df-cnv 5627 df-co 5628 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-fsupp 9252 |
| This theorem is referenced by: mhpmulcl 22034 psdmplcl 22047 mptiffisupp 32635 elrgspnlem2 33183 elrgspnlem4 33185 elrgspnsubrunlem1 33187 elrgspnsubrunlem2 33188 elrspunsn 33366 selvvvval 42558 evlselvlem 42559 evlselv 42560 |
| Copyright terms: Public domain | W3C validator |