MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfsuppd Structured version   Visualization version   GIF version

Theorem isfsuppd 9317
Description: Deduction form of isfsupp 9316. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
isfsuppd.r (𝜑𝑅𝑉)
isfsuppd.z (𝜑𝑍𝑊)
isfsuppd.1 (𝜑 → Fun 𝑅)
isfsuppd.2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
isfsuppd (𝜑𝑅 finSupp 𝑍)

Proof of Theorem isfsuppd
StepHypRef Expression
1 isfsuppd.1 . 2 (𝜑 → Fun 𝑅)
2 isfsuppd.2 . 2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
3 isfsuppd.r . . 3 (𝜑𝑅𝑉)
4 isfsuppd.z . . 3 (𝜑𝑍𝑊)
5 isfsupp 9316 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
71, 2, 6mpbir2and 713 1 (𝜑𝑅 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107  Fun wfun 6505  (class class class)co 7387   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-fsupp 9313
This theorem is referenced by:  mhpmulcl  22036  psdmplcl  22049  mptiffisupp  32616  elrgspnlem2  33194  elrgspnlem4  33196  elrgspnsubrunlem1  33198  elrgspnsubrunlem2  33199  elrspunsn  33400  selvvvval  42573  evlselvlem  42574  evlselv  42575
  Copyright terms: Public domain W3C validator