![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfsuppd | Structured version Visualization version GIF version |
Description: Deduction form of isfsupp 9403. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
Ref | Expression |
---|---|
isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
5 | isfsupp 9403 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 Fun wfun 6557 (class class class)co 7431 supp csupp 8184 Fincfn 8984 finSupp cfsupp 9399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-fsupp 9400 |
This theorem is referenced by: mhpmulcl 22171 psdmplcl 22184 mptiffisupp 32708 elrgspnlem2 33233 elrgspnlem4 33235 elrspunsn 33437 selvvvval 42572 evlselvlem 42573 evlselv 42574 |
Copyright terms: Public domain | W3C validator |