| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfsuppd | Structured version Visualization version GIF version | ||
| Description: Deduction form of isfsupp 9388. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
| isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
| Ref | Expression |
|---|---|
| isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
| 2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
| 3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 5 | isfsupp 9388 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5125 Fun wfun 6536 (class class class)co 7414 supp csupp 8168 Fincfn 8968 finSupp cfsupp 9384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-rel 5674 df-cnv 5675 df-co 5676 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-fsupp 9385 |
| This theorem is referenced by: mhpmulcl 22120 psdmplcl 22133 mptiffisupp 32649 elrgspnlem2 33193 elrgspnlem4 33195 elrgspnsubrunlem1 33197 elrgspnsubrunlem2 33198 elrspunsn 33398 selvvvval 42540 evlselvlem 42541 evlselv 42542 |
| Copyright terms: Public domain | W3C validator |