| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfsuppd | Structured version Visualization version GIF version | ||
| Description: Deduction form of isfsupp 9244. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
| isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
| Ref | Expression |
|---|---|
| isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
| 2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
| 3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 5 | isfsupp 9244 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 Fun wfun 6470 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-fsupp 9241 |
| This theorem is referenced by: mhpmulcl 22059 psdmplcl 22072 mptiffisupp 32666 indfsd 32841 elrgspnlem2 33202 elrgspnlem4 33204 elrgspnsubrunlem1 33206 elrgspnsubrunlem2 33207 elrspunsn 33386 selvvvval 42618 evlselvlem 42619 evlselv 42620 |
| Copyright terms: Public domain | W3C validator |