MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfsuppd Structured version   Visualization version   GIF version

Theorem isfsuppd 9245
Description: Deduction form of isfsupp 9244. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
isfsuppd.r (𝜑𝑅𝑉)
isfsuppd.z (𝜑𝑍𝑊)
isfsuppd.1 (𝜑 → Fun 𝑅)
isfsuppd.2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
isfsuppd (𝜑𝑅 finSupp 𝑍)

Proof of Theorem isfsuppd
StepHypRef Expression
1 isfsuppd.1 . 2 (𝜑 → Fun 𝑅)
2 isfsuppd.2 . 2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
3 isfsuppd.r . . 3 (𝜑𝑅𝑉)
4 isfsuppd.z . . 3 (𝜑𝑍𝑊)
5 isfsupp 9244 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
71, 2, 6mpbir2and 713 1 (𝜑𝑅 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5086  Fun wfun 6470  (class class class)co 7341   supp csupp 8085  Fincfn 8864   finSupp cfsupp 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-rel 5618  df-cnv 5619  df-co 5620  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-fsupp 9241
This theorem is referenced by:  mhpmulcl  22059  psdmplcl  22072  mptiffisupp  32666  indfsd  32841  elrgspnlem2  33202  elrgspnlem4  33204  elrgspnsubrunlem1  33206  elrgspnsubrunlem2  33207  elrspunsn  33386  selvvvval  42618  evlselvlem  42619  evlselv  42620
  Copyright terms: Public domain W3C validator