Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfsuppd | Structured version Visualization version GIF version |
Description: Deduction form of isfsupp 9132. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
Ref | Expression |
---|---|
isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
5 | isfsupp 9132 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
7 | 1, 2, 6 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 Fun wfun 6427 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-fsupp 9129 |
This theorem is referenced by: evlsbagval 40275 mhphf 40285 |
Copyright terms: Public domain | W3C validator |