![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfsuppd | Structured version Visualization version GIF version |
Description: Deduction form of isfsupp 9435. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
isfsuppd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
isfsuppd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
isfsuppd.1 | ⊢ (𝜑 → Fun 𝑅) |
isfsuppd.2 | ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) |
Ref | Expression |
---|---|
isfsuppd | ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.1 | . 2 ⊢ (𝜑 → Fun 𝑅) | |
2 | isfsuppd.2 | . 2 ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) | |
3 | isfsuppd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
4 | isfsuppd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
5 | isfsupp 9435 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
7 | 1, 2, 6 | mpbir2and 712 | 1 ⊢ (𝜑 → 𝑅 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 Fun wfun 6567 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-fsupp 9432 |
This theorem is referenced by: mhpmulcl 22176 psdmplcl 22189 mptiffisupp 32705 elrspunsn 33422 selvvvval 42540 evlselvlem 42541 evlselv 42542 |
Copyright terms: Public domain | W3C validator |