Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfsuppd Structured version   Visualization version   GIF version

Theorem isfsuppd 40217
Description: Deduction form of isfsupp 9132. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
isfsuppd.r (𝜑𝑅𝑉)
isfsuppd.z (𝜑𝑍𝑊)
isfsuppd.1 (𝜑 → Fun 𝑅)
isfsuppd.2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
isfsuppd (𝜑𝑅 finSupp 𝑍)

Proof of Theorem isfsuppd
StepHypRef Expression
1 isfsuppd.1 . 2 (𝜑 → Fun 𝑅)
2 isfsuppd.2 . 2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
3 isfsuppd.r . . 3 (𝜑𝑅𝑉)
4 isfsuppd.z . . 3 (𝜑𝑍𝑊)
5 isfsupp 9132 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
71, 2, 6mpbir2and 710 1 (𝜑𝑅 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5074  Fun wfun 6427  (class class class)co 7275   supp csupp 7977  Fincfn 8733   finSupp cfsupp 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-fsupp 9129
This theorem is referenced by:  evlsbagval  40275  mhphf  40285
  Copyright terms: Public domain W3C validator