MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfsuppd Structured version   Visualization version   GIF version

Theorem isfsuppd 9368
Description: Deduction form of isfsupp 9367. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
isfsuppd.r (𝜑𝑅𝑉)
isfsuppd.z (𝜑𝑍𝑊)
isfsuppd.1 (𝜑 → Fun 𝑅)
isfsuppd.2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
Assertion
Ref Expression
isfsuppd (𝜑𝑅 finSupp 𝑍)

Proof of Theorem isfsuppd
StepHypRef Expression
1 isfsuppd.1 . 2 (𝜑 → Fun 𝑅)
2 isfsuppd.2 . 2 (𝜑 → (𝑅 supp 𝑍) ∈ Fin)
3 isfsuppd.r . . 3 (𝜑𝑅𝑉)
4 isfsuppd.z . . 3 (𝜑𝑍𝑊)
5 isfsupp 9367 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
63, 4, 5syl2anc 582 . 2 (𝜑 → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
71, 2, 6mpbir2and 709 1 (𝜑𝑅 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2104   class class class wbr 5147  Fun wfun 6536  (class class class)co 7411   supp csupp 8148  Fincfn 8941   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-rel 5682  df-cnv 5683  df-co 5684  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-fsupp 9364
This theorem is referenced by:  mptiffisupp  32182  elrspunsn  32821  selvvvval  41459  evlselvlem  41460  evlselv  41461
  Copyright terms: Public domain W3C validator