![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funisfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
Ref | Expression |
---|---|
funisfsupp | ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsupp 9361 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
2 | 1 | 3adant1 1127 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
3 | ibar 528 | . . . 4 ⊢ (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
4 | 3 | bicomd 222 | . . 3 ⊢ (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
5 | 4 | 3ad2ant1 1130 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
6 | 2, 5 | bitrd 279 | 1 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5138 Fun wfun 6527 (class class class)co 7401 supp csupp 8140 Fincfn 8935 finSupp cfsupp 9357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-rel 5673 df-cnv 5674 df-co 5675 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-fsupp 9358 |
This theorem is referenced by: fidmfisupp 9367 suppeqfsuppbi 9373 suppssfifsupp 9374 fsuppunbi 9380 0fsupp 9381 snopfsupp 9382 fsuppres 9384 resfsupp 9387 ffsuppbi 9389 sniffsupp 9391 fsuppco 9393 cantnfp1lem1 9669 fcdmnn0fsuppg 12528 mptnn0fsupp 13959 dprdfadd 19932 lcomfsupp 20738 frlmbas 21618 frlmphllem 21643 frlmsslsp 21659 mplsubglem2 21870 ltbwe 21909 pmatcollpw2lem 22601 rrxmval 25255 offinsupp1 32421 elrspunidl 33015 eulerpartgbij 33860 pwfi2f1o 42327 cantnfub 42560 finnzfsuppd 43450 lcoc0 47291 |
Copyright terms: Public domain | W3C validator |