MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funisfsupp Structured version   Visualization version   GIF version

Theorem funisfsupp 8440
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
funisfsupp ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))

Proof of Theorem funisfsupp
StepHypRef Expression
1 isfsupp 8439 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
213adant1 1124 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
3 ibar 518 . . . 4 (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
43bicomd 213 . . 3 (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
543ad2ant1 1127 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
62, 5bitrd 268 1 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wcel 2145   class class class wbr 4787  Fun wfun 6024  (class class class)co 6796   supp csupp 7450  Fincfn 8113   finSupp cfsupp 8435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-rel 5257  df-cnv 5258  df-co 5259  df-iota 5993  df-fun 6032  df-fv 6038  df-ov 6799  df-fsupp 8436
This theorem is referenced by:  suppeqfsuppbi  8449  suppssfifsupp  8450  fsuppunbi  8456  0fsupp  8457  snopfsupp  8458  fsuppres  8460  resfsupp  8462  frnfsuppbi  8464  fsuppco  8467  sniffsupp  8475  cantnfp1lem1  8743  mptnn0fsupp  13004  dprdfadd  18627  lcomfsupp  19113  mplsubglem2  19651  ltbwe  19687  frlmbas  20316  frlmphllem  20336  frlmsslsp  20352  pmatcollpw2lem  20802  rrxmval  23407  eulerpartgbij  30774  pwfi2f1o  38190  fidmfisupp  39906  lcoc0  42734
  Copyright terms: Public domain W3C validator