| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funisfsupp | Structured version Visualization version GIF version | ||
| Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
| Ref | Expression |
|---|---|
| funisfsupp | ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsupp 9405 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 2 | 1 | 3adant1 1131 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 3 | ibar 528 | . . . 4 ⊢ (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
| 4 | 3 | bicomd 223 | . . 3 ⊢ (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
| 5 | 4 | 3ad2ant1 1134 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
| 6 | 2, 5 | bitrd 279 | 1 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 Fun wfun 6555 (class class class)co 7431 supp csupp 8185 Fincfn 8985 finSupp cfsupp 9401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-rel 5692 df-cnv 5693 df-co 5694 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-fsupp 9402 |
| This theorem is referenced by: fidmfisupp 9412 finnzfsuppd 9413 suppeqfsuppbi 9419 suppssfifsupp 9420 fsuppunbi 9429 0fsupp 9430 snopfsupp 9431 fsuppres 9433 resfsupp 9436 ffsuppbi 9438 sniffsupp 9440 fsuppco 9442 cantnfp1lem1 9718 fcdmnn0fsuppg 12586 mptnn0fsupp 14038 dprdfadd 20040 lcomfsupp 20900 frlmbas 21775 frlmphllem 21800 frlmsslsp 21816 mplsubglem2 22021 ltbwe 22062 pmatcollpw2lem 22783 rrxmval 25439 offinsupp1 32738 elrspunidl 33456 eulerpartgbij 34374 pwfi2f1o 43108 cantnfub 43334 lcoc0 48339 |
| Copyright terms: Public domain | W3C validator |