![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funisfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
Ref | Expression |
---|---|
funisfsupp | ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsupp 9435 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
2 | 1 | 3adant1 1130 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
3 | ibar 528 | . . . 4 ⊢ (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | |
4 | 3 | bicomd 223 | . . 3 ⊢ (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin)) |
6 | 2, 5 | bitrd 279 | 1 ⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 Fun wfun 6567 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-fsupp 9432 |
This theorem is referenced by: fidmfisupp 9442 suppeqfsuppbi 9448 suppssfifsupp 9449 fsuppunbi 9458 0fsupp 9459 snopfsupp 9460 fsuppres 9462 resfsupp 9465 ffsuppbi 9467 sniffsupp 9469 fsuppco 9471 cantnfp1lem1 9747 fcdmnn0fsuppg 12612 mptnn0fsupp 14048 dprdfadd 20064 lcomfsupp 20922 frlmbas 21798 frlmphllem 21823 frlmsslsp 21839 mplsubglem2 22044 ltbwe 22085 pmatcollpw2lem 22804 rrxmval 25458 offinsupp1 32741 elrspunidl 33421 eulerpartgbij 34337 pwfi2f1o 43053 cantnfub 43283 finnzfsuppd 44171 lcoc0 48151 |
Copyright terms: Public domain | W3C validator |