MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funisfsupp Structured version   Visualization version   GIF version

Theorem funisfsupp 9369
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
funisfsupp ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))

Proof of Theorem funisfsupp
StepHypRef Expression
1 isfsupp 9367 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
213adant1 1127 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
3 ibar 528 . . . 4 (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
43bicomd 222 . . 3 (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
543ad2ant1 1130 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
62, 5bitrd 279 1 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wcel 2098   class class class wbr 5141  Fun wfun 6531  (class class class)co 7405   supp csupp 8146  Fincfn 8941   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-rel 5676  df-cnv 5677  df-co 5678  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-fsupp 9364
This theorem is referenced by:  fidmfisupp  9373  suppeqfsuppbi  9379  suppssfifsupp  9380  fsuppunbi  9386  0fsupp  9387  snopfsupp  9388  fsuppres  9390  resfsupp  9393  ffsuppbi  9395  sniffsupp  9397  fsuppco  9399  cantnfp1lem1  9675  fcdmnn0fsuppg  12535  mptnn0fsupp  13968  dprdfadd  19942  lcomfsupp  20748  frlmbas  21650  frlmphllem  21675  frlmsslsp  21691  mplsubglem2  21902  ltbwe  21941  pmatcollpw2lem  22634  rrxmval  25288  offinsupp1  32459  elrspunidl  33052  eulerpartgbij  33901  pwfi2f1o  42421  cantnfub  42652  finnzfsuppd  43542  lcoc0  47383
  Copyright terms: Public domain W3C validator