MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funisfsupp Structured version   Visualization version   GIF version

Theorem funisfsupp 9246
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
funisfsupp ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))

Proof of Theorem funisfsupp
StepHypRef Expression
1 isfsupp 9244 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
213adant1 1130 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
3 ibar 528 . . . 4 (Fun 𝑅 → ((𝑅 supp 𝑍) ∈ Fin ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
43bicomd 223 . . 3 (Fun 𝑅 → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
543ad2ant1 1133 . 2 ((Fun 𝑅𝑅𝑉𝑍𝑊) → ((Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin) ↔ (𝑅 supp 𝑍) ∈ Fin))
62, 5bitrd 279 1 ((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111   class class class wbr 5086  Fun wfun 6470  (class class class)co 7341   supp csupp 8085  Fincfn 8864   finSupp cfsupp 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-rel 5618  df-cnv 5619  df-co 5620  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-fsupp 9241
This theorem is referenced by:  fidmfisupp  9251  finnzfsuppd  9252  suppeqfsuppbi  9258  suppssfifsupp  9259  fsuppunbi  9268  0fsupp  9269  snopfsupp  9270  fsuppres  9272  resfsupp  9275  ffsuppbi  9277  sniffsupp  9279  fsuppco  9281  cantnfp1lem1  9563  fcdmnn0fsuppg  12436  mptnn0fsupp  13899  dprdfadd  19929  lcomfsupp  20830  frlmbas  21687  frlmphllem  21712  frlmsslsp  21728  mplsubglem2  21933  ltbwe  21974  pmatcollpw2lem  22687  rrxmval  25327  offinsupp1  32701  elrspunidl  33385  eulerpartgbij  34377  pwfi2f1o  43129  cantnfub  43354  lcoc0  48454
  Copyright terms: Public domain W3C validator