MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmnd Structured version   Visualization version   GIF version

Theorem isnmnd 18665
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.)
Hypotheses
Ref Expression
isnmnd.b 𝐵 = (Base‘𝑀)
isnmnd.o = (+g𝑀)
Assertion
Ref Expression
isnmnd (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝐵,𝑧   𝑥,𝑀,𝑧   𝑥, ,𝑧

Proof of Theorem isnmnd
StepHypRef Expression
1 neneq 2931 . . . . . . . 8 ((𝑧 𝑥) ≠ 𝑥 → ¬ (𝑧 𝑥) = 𝑥)
21intnanrd 489 . . . . . . 7 ((𝑧 𝑥) ≠ 𝑥 → ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
32reximi 3067 . . . . . 6 (∃𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ∃𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
43ralimi 3066 . . . . 5 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ∀𝑧𝐵𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
5 rexnal 3082 . . . . . . 7 (∃𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ¬ ∀𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
65ralbii 3075 . . . . . 6 (∀𝑧𝐵𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ∀𝑧𝐵 ¬ ∀𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
7 ralnex 3055 . . . . . 6 (∀𝑧𝐵 ¬ ∀𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ¬ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
86, 7bitri 275 . . . . 5 (∀𝑧𝐵𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ¬ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
94, 8sylib 218 . . . 4 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ¬ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
109intnand 488 . . 3 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ¬ (𝑀 ∈ Smgrp ∧ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥)))
11 isnmnd.b . . . 4 𝐵 = (Base‘𝑀)
12 isnmnd.o . . . 4 = (+g𝑀)
1311, 12ismnddef 18663 . . 3 (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥)))
1410, 13sylnibr 329 . 2 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd)
15 df-nel 3030 . 2 (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd)
1614, 15sylibr 234 1 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Smgrpcsgrp 18645  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-mnd 18662
This theorem is referenced by:  sgrp2nmndlem5  18856  copisnmnd  48157  nnsgrpnmnd  48166  2zrngnring  48246
  Copyright terms: Public domain W3C validator