Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnmnd | Structured version Visualization version GIF version |
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
isnmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
isnmnd.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
isnmnd | ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2946 | . . . . . . . 8 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑧 ⚬ 𝑥) = 𝑥) | |
2 | 1 | intnanrd 490 | . . . . . . 7 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
3 | 2 | reximi 3083 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
4 | 3 | ralimi 3082 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
5 | rexnal 3099 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
6 | 5 | ralbii 3092 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
7 | ralnex 3072 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
8 | 6, 7 | bitri 274 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
9 | 4, 8 | sylib 217 | . . . 4 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
10 | 9 | intnand 489 | . . 3 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
11 | isnmnd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
12 | isnmnd.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
13 | 11, 12 | ismnddef 18461 | . . 3 ⊢ (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
14 | 10, 13 | sylnibr 328 | . 2 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd) |
15 | df-nel 3047 | . 2 ⊢ (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∉ wnel 3046 ∀wral 3061 ∃wrex 3070 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 +gcplusg 17036 Smgrpcsgrp 18448 Mndcmnd 18459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5244 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-iota 6417 df-fv 6473 df-ov 7319 df-mnd 18460 |
This theorem is referenced by: sgrp2nmndlem5 18641 copisnmnd 45633 nnsgrpnmnd 45642 2zrngnring 45780 |
Copyright terms: Public domain | W3C validator |