Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnmnd | Structured version Visualization version GIF version |
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
isnmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
isnmnd.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
isnmnd | ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2949 | . . . . . . . 8 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑧 ⚬ 𝑥) = 𝑥) | |
2 | 1 | intnanrd 490 | . . . . . . 7 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
3 | 2 | reximi 3178 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
4 | 3 | ralimi 3087 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
5 | rexnal 3169 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
6 | 5 | ralbii 3092 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
7 | ralnex 3167 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
8 | 6, 7 | bitri 274 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
9 | 4, 8 | sylib 217 | . . . 4 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
10 | 9 | intnand 489 | . . 3 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
11 | isnmnd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
12 | isnmnd.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
13 | 11, 12 | ismnddef 18387 | . . 3 ⊢ (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
14 | 10, 13 | sylnibr 329 | . 2 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd) |
15 | df-nel 3050 | . 2 ⊢ (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∉ wnel 3049 ∀wral 3064 ∃wrex 3065 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Smgrpcsgrp 18374 Mndcmnd 18385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-mnd 18386 |
This theorem is referenced by: sgrp2nmndlem5 18568 copisnmnd 45363 nnsgrpnmnd 45372 2zrngnring 45510 |
Copyright terms: Public domain | W3C validator |