![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnmnd | Structured version Visualization version GIF version |
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
isnmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
isnmnd.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
isnmnd | ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2935 | . . . . . . . 8 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑧 ⚬ 𝑥) = 𝑥) | |
2 | 1 | intnanrd 488 | . . . . . . 7 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
3 | 2 | reximi 3073 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
4 | 3 | ralimi 3072 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
5 | rexnal 3089 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
6 | 5 | ralbii 3082 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
7 | ralnex 3061 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
8 | 6, 7 | bitri 274 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
9 | 4, 8 | sylib 217 | . . . 4 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
10 | 9 | intnand 487 | . . 3 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
11 | isnmnd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
12 | isnmnd.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
13 | 11, 12 | ismnddef 18699 | . . 3 ⊢ (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
14 | 10, 13 | sylnibr 328 | . 2 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd) |
15 | df-nel 3036 | . 2 ⊢ (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∉ wnel 3035 ∀wral 3050 ∃wrex 3059 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 Smgrpcsgrp 18681 Mndcmnd 18697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-mnd 18698 |
This theorem is referenced by: sgrp2nmndlem5 18889 copisnmnd 47417 nnsgrpnmnd 47426 2zrngnring 47506 |
Copyright terms: Public domain | W3C validator |