![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnmnd | Structured version Visualization version GIF version |
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
isnmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
isnmnd.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
isnmnd | ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2952 | . . . . . . . 8 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑧 ⚬ 𝑥) = 𝑥) | |
2 | 1 | intnanrd 489 | . . . . . . 7 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
3 | 2 | reximi 3090 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
4 | 3 | ralimi 3089 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
5 | rexnal 3106 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
6 | 5 | ralbii 3099 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
7 | ralnex 3078 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
8 | 6, 7 | bitri 275 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
9 | 4, 8 | sylib 218 | . . . 4 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
10 | 9 | intnand 488 | . . 3 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
11 | isnmnd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
12 | isnmnd.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
13 | 11, 12 | ismnddef 18774 | . . 3 ⊢ (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
14 | 10, 13 | sylnibr 329 | . 2 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd) |
15 | df-nel 3053 | . 2 ⊢ (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd) | |
16 | 14, 15 | sylibr 234 | 1 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∀wral 3067 ∃wrex 3076 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Smgrpcsgrp 18756 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-mnd 18773 |
This theorem is referenced by: sgrp2nmndlem5 18964 copisnmnd 47892 nnsgrpnmnd 47901 2zrngnring 47981 |
Copyright terms: Public domain | W3C validator |