MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmnd Structured version   Visualization version   GIF version

Theorem isnmnd 18463
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.)
Hypotheses
Ref Expression
isnmnd.b 𝐵 = (Base‘𝑀)
isnmnd.o = (+g𝑀)
Assertion
Ref Expression
isnmnd (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝐵,𝑧   𝑥,𝑀,𝑧   𝑥, ,𝑧

Proof of Theorem isnmnd
StepHypRef Expression
1 neneq 2946 . . . . . . . 8 ((𝑧 𝑥) ≠ 𝑥 → ¬ (𝑧 𝑥) = 𝑥)
21intnanrd 490 . . . . . . 7 ((𝑧 𝑥) ≠ 𝑥 → ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
32reximi 3083 . . . . . 6 (∃𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ∃𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
43ralimi 3082 . . . . 5 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ∀𝑧𝐵𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
5 rexnal 3099 . . . . . . 7 (∃𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ¬ ∀𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
65ralbii 3092 . . . . . 6 (∀𝑧𝐵𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ∀𝑧𝐵 ¬ ∀𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
7 ralnex 3072 . . . . . 6 (∀𝑧𝐵 ¬ ∀𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ¬ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
86, 7bitri 274 . . . . 5 (∀𝑧𝐵𝑥𝐵 ¬ ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥) ↔ ¬ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
94, 8sylib 217 . . . 4 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ¬ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥))
109intnand 489 . . 3 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ¬ (𝑀 ∈ Smgrp ∧ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥)))
11 isnmnd.b . . . 4 𝐵 = (Base‘𝑀)
12 isnmnd.o . . . 4 = (+g𝑀)
1311, 12ismnddef 18461 . . 3 (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑧𝐵𝑥𝐵 ((𝑧 𝑥) = 𝑥 ∧ (𝑥 𝑧) = 𝑥)))
1410, 13sylnibr 328 . 2 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd)
15 df-nel 3047 . 2 (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd)
1614, 15sylibr 233 1 (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  wnel 3046  wral 3061  wrex 3070  cfv 6465  (class class class)co 7316  Basecbs 16986  +gcplusg 17036  Smgrpcsgrp 18448  Mndcmnd 18459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5244
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-iota 6417  df-fv 6473  df-ov 7319  df-mnd 18460
This theorem is referenced by:  sgrp2nmndlem5  18641  copisnmnd  45633  nnsgrpnmnd  45642  2zrngnring  45780
  Copyright terms: Public domain W3C validator