Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnmnd | Structured version Visualization version GIF version |
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
isnmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
isnmnd.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
isnmnd | ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq 2948 | . . . . . . . 8 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑧 ⚬ 𝑥) = 𝑥) | |
2 | 1 | intnanrd 489 | . . . . . . 7 ⊢ ((𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
3 | 2 | reximi 3174 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
4 | 3 | ralimi 3086 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
5 | rexnal 3165 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
6 | 5 | ralbii 3090 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
7 | ralnex 3163 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ¬ ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) | |
8 | 6, 7 | bitri 274 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ¬ ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥) ↔ ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
9 | 4, 8 | sylib 217 | . . . 4 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥)) |
10 | 9 | intnand 488 | . . 3 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
11 | isnmnd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
12 | isnmnd.o | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
13 | 11, 12 | ismnddef 18302 | . . 3 ⊢ (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑧 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑧 ⚬ 𝑥) = 𝑥 ∧ (𝑥 ⚬ 𝑧) = 𝑥))) |
14 | 10, 13 | sylnibr 328 | . 2 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → ¬ 𝑀 ∈ Mnd) |
15 | df-nel 3049 | . 2 ⊢ (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∀𝑧 ∈ 𝐵 ∃𝑥 ∈ 𝐵 (𝑧 ⚬ 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 ∀wral 3063 ∃wrex 3064 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Smgrpcsgrp 18289 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-mnd 18301 |
This theorem is referenced by: sgrp2nmndlem5 18483 copisnmnd 45251 nnsgrpnmnd 45260 2zrngnring 45398 |
Copyright terms: Public domain | W3C validator |