Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copisnmnd Structured version   Visualization version   GIF version

Theorem copisnmnd 45714
Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
copisnmnd.b 𝐵 = (Base‘𝑀)
copisnmnd.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
copisnmnd.c (𝜑𝐶𝐵)
copisnmnd.n (𝜑 → 1 < (♯‘𝐵))
Assertion
Ref Expression
copisnmnd (𝜑𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem copisnmnd
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 copisnmnd.c . . 3 (𝜑𝐶𝐵)
2 copisnmnd.n . . 3 (𝜑 → 1 < (♯‘𝐵))
3 copisnmnd.b . . . . . . 7 𝐵 = (Base‘𝑀)
43fvexi 6839 . . . . . 6 𝐵 ∈ V
54a1i 11 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐵 ∈ V)
6 simpr 485 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 1 < (♯‘𝐵))
7 simpl 483 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐶𝐵)
8 hashgt12el2 14238 . . . . 5 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵) ∧ 𝐶𝐵) → ∃𝑐𝐵 𝐶𝑐)
95, 6, 7, 8syl3anc 1370 . . . 4 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∃𝑐𝐵 𝐶𝑐)
10 df-ne 2941 . . . . . . 7 (𝐶𝑐 ↔ ¬ 𝐶 = 𝑐)
1110rexbii 3093 . . . . . 6 (∃𝑐𝐵 𝐶𝑐 ↔ ∃𝑐𝐵 ¬ 𝐶 = 𝑐)
12 rexnal 3099 . . . . . 6 (∃𝑐𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
1311, 12bitri 274 . . . . 5 (∃𝑐𝐵 𝐶𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
14 eqidd 2737 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
15 eqidd 2737 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
16 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑎𝐵)
1716adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
18 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
191adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝐶𝐵)
2019adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐶𝐵)
2114, 15, 17, 18, 20ovmpod 7487 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
2221adantr 481 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
23 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
2422, 23eqtr3d 2778 . . . . . . . . . 10 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → 𝐶 = 𝑐)
2524ex 413 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐𝐶 = 𝑐))
2625ralimdva 3160 . . . . . . . 8 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2726rexlimdva 3148 . . . . . . 7 (𝜑 → (∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2827con3d 152 . . . . . 6 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐))
29 rexnal 3099 . . . . . . . . 9 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3029bicomi 223 . . . . . . . 8 (¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3130ralbii 3092 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
32 ralnex 3072 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
33 df-ne 2941 . . . . . . . . . 10 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐 ↔ ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3433bicomi 223 . . . . . . . . 9 (¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3534rexbii 3093 . . . . . . . 8 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3635ralbii 3092 . . . . . . 7 (∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3731, 32, 363bitr3i 300 . . . . . 6 (¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3828, 37syl6ib 250 . . . . 5 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
3913, 38biimtrid 241 . . . 4 (𝜑 → (∃𝑐𝐵 𝐶𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
409, 39syl5 34 . . 3 (𝜑 → ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
411, 2, 40mp2and 696 . 2 (𝜑 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
42 copisnmnd.p . . . 4 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
4342eqcomi 2745 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
443, 43isnmnd 18486 . 2 (∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐𝑀 ∉ Mnd)
4541, 44syl 17 1 (𝜑𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  wnel 3046  wral 3061  wrex 3070  Vcvv 3441   class class class wbr 5092  cfv 6479  (class class class)co 7337  cmpo 7339  1c1 10973   < clt 11110  chash 14145  Basecbs 17009  +gcplusg 17059  Mndcmnd 18482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-fz 13341  df-hash 14146  df-mnd 18483
This theorem is referenced by:  cznnring  45865
  Copyright terms: Public domain W3C validator