Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copisnmnd Structured version   Visualization version   GIF version

Theorem copisnmnd 44083
Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
copisnmnd.b 𝐵 = (Base‘𝑀)
copisnmnd.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
copisnmnd.c (𝜑𝐶𝐵)
copisnmnd.n (𝜑 → 1 < (♯‘𝐵))
Assertion
Ref Expression
copisnmnd (𝜑𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem copisnmnd
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 copisnmnd.c . . 3 (𝜑𝐶𝐵)
2 copisnmnd.n . . 3 (𝜑 → 1 < (♯‘𝐵))
3 copisnmnd.b . . . . . . 7 𝐵 = (Base‘𝑀)
43fvexi 6686 . . . . . 6 𝐵 ∈ V
54a1i 11 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐵 ∈ V)
6 simpr 487 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 1 < (♯‘𝐵))
7 simpl 485 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐶𝐵)
8 hashgt12el2 13787 . . . . 5 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵) ∧ 𝐶𝐵) → ∃𝑐𝐵 𝐶𝑐)
95, 6, 7, 8syl3anc 1367 . . . 4 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∃𝑐𝐵 𝐶𝑐)
10 df-ne 3019 . . . . . . 7 (𝐶𝑐 ↔ ¬ 𝐶 = 𝑐)
1110rexbii 3249 . . . . . 6 (∃𝑐𝐵 𝐶𝑐 ↔ ∃𝑐𝐵 ¬ 𝐶 = 𝑐)
12 rexnal 3240 . . . . . 6 (∃𝑐𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
1311, 12bitri 277 . . . . 5 (∃𝑐𝐵 𝐶𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
14 eqidd 2824 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
15 eqidd 2824 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
16 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑎𝐵)
1716adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
18 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
191adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝐶𝐵)
2019adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐶𝐵)
2114, 15, 17, 18, 20ovmpod 7304 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
2221adantr 483 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
23 simpr 487 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
2422, 23eqtr3d 2860 . . . . . . . . . 10 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → 𝐶 = 𝑐)
2524ex 415 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐𝐶 = 𝑐))
2625ralimdva 3179 . . . . . . . 8 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2726rexlimdva 3286 . . . . . . 7 (𝜑 → (∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2827con3d 155 . . . . . 6 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐))
29 rexnal 3240 . . . . . . . . 9 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3029bicomi 226 . . . . . . . 8 (¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3130ralbii 3167 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
32 ralnex 3238 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
33 df-ne 3019 . . . . . . . . . 10 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐 ↔ ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3433bicomi 226 . . . . . . . . 9 (¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3534rexbii 3249 . . . . . . . 8 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3635ralbii 3167 . . . . . . 7 (∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3731, 32, 363bitr3i 303 . . . . . 6 (¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3828, 37syl6ib 253 . . . . 5 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
3913, 38syl5bi 244 . . . 4 (𝜑 → (∃𝑐𝐵 𝐶𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
409, 39syl5 34 . . 3 (𝜑 → ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
411, 2, 40mp2and 697 . 2 (𝜑 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
42 copisnmnd.p . . . 4 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
4342eqcomi 2832 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
443, 43isnmnd 17917 . 2 (∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐𝑀 ∉ Mnd)
4541, 44syl 17 1 (𝜑𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wnel 3125  wral 3140  wrex 3141  Vcvv 3496   class class class wbr 5068  cfv 6357  (class class class)co 7158  cmpo 7160  1c1 10540   < clt 10677  chash 13693  Basecbs 16485  +gcplusg 16567  Mndcmnd 17913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-mnd 17914
This theorem is referenced by:  cznnring  44234
  Copyright terms: Public domain W3C validator