| Step | Hyp | Ref
| Expression |
| 1 | | copisnmnd.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 2 | | copisnmnd.n |
. . 3
⊢ (𝜑 → 1 <
(♯‘𝐵)) |
| 3 | | copisnmnd.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
| 4 | 3 | fvexi 6919 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (♯‘𝐵)) → 𝐵 ∈ V) |
| 6 | | simpr 484 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (♯‘𝐵)) → 1 <
(♯‘𝐵)) |
| 7 | | simpl 482 |
. . . . 5
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (♯‘𝐵)) → 𝐶 ∈ 𝐵) |
| 8 | | hashgt12el2 14463 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 1 <
(♯‘𝐵) ∧
𝐶 ∈ 𝐵) → ∃𝑐 ∈ 𝐵 𝐶 ≠ 𝑐) |
| 9 | 5, 6, 7, 8 | syl3anc 1372 |
. . . 4
⊢ ((𝐶 ∈ 𝐵 ∧ 1 < (♯‘𝐵)) → ∃𝑐 ∈ 𝐵 𝐶 ≠ 𝑐) |
| 10 | | df-ne 2940 |
. . . . . . 7
⊢ (𝐶 ≠ 𝑐 ↔ ¬ 𝐶 = 𝑐) |
| 11 | 10 | rexbii 3093 |
. . . . . 6
⊢
(∃𝑐 ∈
𝐵 𝐶 ≠ 𝑐 ↔ ∃𝑐 ∈ 𝐵 ¬ 𝐶 = 𝑐) |
| 12 | | rexnal 3099 |
. . . . . 6
⊢
(∃𝑐 ∈
𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐) |
| 13 | 11, 12 | bitri 275 |
. . . . 5
⊢
(∃𝑐 ∈
𝐵 𝐶 ≠ 𝑐 ↔ ¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐) |
| 14 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| 15 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑐)) → 𝐶 = 𝐶) |
| 16 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 18 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ 𝐵) |
| 19 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 21 | 14, 15, 17, 18, 20 | ovmpod 7586 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝐶) |
| 23 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) → (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
| 24 | 22, 23 | eqtr3d 2778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) ∧ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) → 𝐶 = 𝑐) |
| 25 | 24 | ex 412 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 → 𝐶 = 𝑐)) |
| 26 | 25 | ralimdva 3166 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 → ∀𝑐 ∈ 𝐵 𝐶 = 𝑐)) |
| 27 | 26 | rexlimdva 3154 |
. . . . . . 7
⊢ (𝜑 → (∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 → ∀𝑐 ∈ 𝐵 𝐶 = 𝑐)) |
| 28 | 27 | con3d 152 |
. . . . . 6
⊢ (𝜑 → (¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐 → ¬ ∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐)) |
| 29 | | rexnal 3099 |
. . . . . . . . 9
⊢
(∃𝑐 ∈
𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ¬ ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
| 30 | 29 | bicomi 224 |
. . . . . . . 8
⊢ (¬
∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∃𝑐 ∈ 𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
| 31 | 30 | ralbii 3092 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐵 ¬ ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
| 32 | | ralnex 3071 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐵 ¬ ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ¬ ∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
| 33 | | df-ne 2940 |
. . . . . . . . . 10
⊢ ((𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐 ↔ ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐) |
| 34 | 33 | bicomi 224 |
. . . . . . . . 9
⊢ (¬
(𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
| 35 | 34 | rexbii 3093 |
. . . . . . . 8
⊢
(∃𝑐 ∈
𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
| 36 | 35 | ralbii 3092 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐵 ∃𝑐 ∈ 𝐵 ¬ (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
| 37 | 31, 32, 36 | 3bitr3i 301 |
. . . . . 6
⊢ (¬
∃𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) = 𝑐 ↔ ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
| 38 | 28, 37 | imbitrdi 251 |
. . . . 5
⊢ (𝜑 → (¬ ∀𝑐 ∈ 𝐵 𝐶 = 𝑐 → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐)) |
| 39 | 13, 38 | biimtrid 242 |
. . . 4
⊢ (𝜑 → (∃𝑐 ∈ 𝐵 𝐶 ≠ 𝑐 → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐)) |
| 40 | 9, 39 | syl5 34 |
. . 3
⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ 1 < (♯‘𝐵)) → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐)) |
| 41 | 1, 2, 40 | mp2and 699 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐) |
| 42 | | copisnmnd.p |
. . . 4
⊢
(+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| 43 | 42 | eqcomi 2745 |
. . 3
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) = (+g‘𝑀) |
| 44 | 3, 43 | isnmnd 18752 |
. 2
⊢
(∀𝑎 ∈
𝐵 ∃𝑐 ∈ 𝐵 (𝑎(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑐) ≠ 𝑐 → 𝑀 ∉ Mnd) |
| 45 | 41, 44 | syl 17 |
1
⊢ (𝜑 → 𝑀 ∉ Mnd) |