Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copisnmnd Structured version   Visualization version   GIF version

Theorem copisnmnd 45036
Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
copisnmnd.b 𝐵 = (Base‘𝑀)
copisnmnd.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
copisnmnd.c (𝜑𝐶𝐵)
copisnmnd.n (𝜑 → 1 < (♯‘𝐵))
Assertion
Ref Expression
copisnmnd (𝜑𝑀 ∉ Mnd)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem copisnmnd
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 copisnmnd.c . . 3 (𝜑𝐶𝐵)
2 copisnmnd.n . . 3 (𝜑 → 1 < (♯‘𝐵))
3 copisnmnd.b . . . . . . 7 𝐵 = (Base‘𝑀)
43fvexi 6731 . . . . . 6 𝐵 ∈ V
54a1i 11 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐵 ∈ V)
6 simpr 488 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 1 < (♯‘𝐵))
7 simpl 486 . . . . 5 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → 𝐶𝐵)
8 hashgt12el2 13990 . . . . 5 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵) ∧ 𝐶𝐵) → ∃𝑐𝐵 𝐶𝑐)
95, 6, 7, 8syl3anc 1373 . . . 4 ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∃𝑐𝐵 𝐶𝑐)
10 df-ne 2941 . . . . . . 7 (𝐶𝑐 ↔ ¬ 𝐶 = 𝑐)
1110rexbii 3170 . . . . . 6 (∃𝑐𝐵 𝐶𝑐 ↔ ∃𝑐𝐵 ¬ 𝐶 = 𝑐)
12 rexnal 3160 . . . . . 6 (∃𝑐𝐵 ¬ 𝐶 = 𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
1311, 12bitri 278 . . . . 5 (∃𝑐𝐵 𝐶𝑐 ↔ ¬ ∀𝑐𝐵 𝐶 = 𝑐)
14 eqidd 2738 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶))
15 eqidd 2738 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑥 = 𝑎𝑦 = 𝑐)) → 𝐶 = 𝐶)
16 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑎𝐵)
1716adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
18 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
191adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝐶𝐵)
2019adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐶𝐵)
2114, 15, 17, 18, 20ovmpod 7361 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
2221adantr 484 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝐶)
23 simpr 488 . . . . . . . . . . 11 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
2422, 23eqtr3d 2779 . . . . . . . . . 10 ((((𝜑𝑎𝐵) ∧ 𝑐𝐵) ∧ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐) → 𝐶 = 𝑐)
2524ex 416 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐𝐶 = 𝑐))
2625ralimdva 3100 . . . . . . . 8 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2726rexlimdva 3203 . . . . . . 7 (𝜑 → (∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 → ∀𝑐𝐵 𝐶 = 𝑐))
2827con3d 155 . . . . . 6 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐))
29 rexnal 3160 . . . . . . . . 9 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3029bicomi 227 . . . . . . . 8 (¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3130ralbii 3088 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
32 ralnex 3158 . . . . . . 7 (∀𝑎𝐵 ¬ ∀𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
33 df-ne 2941 . . . . . . . . . 10 ((𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐 ↔ ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐)
3433bicomi 227 . . . . . . . . 9 (¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3534rexbii 3170 . . . . . . . 8 (∃𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∃𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3635ralbii 3088 . . . . . . 7 (∀𝑎𝐵𝑐𝐵 ¬ (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3731, 32, 363bitr3i 304 . . . . . 6 (¬ ∃𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) = 𝑐 ↔ ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
3828, 37syl6ib 254 . . . . 5 (𝜑 → (¬ ∀𝑐𝐵 𝐶 = 𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
3913, 38syl5bi 245 . . . 4 (𝜑 → (∃𝑐𝐵 𝐶𝑐 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
409, 39syl5 34 . . 3 (𝜑 → ((𝐶𝐵 ∧ 1 < (♯‘𝐵)) → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐))
411, 2, 40mp2and 699 . 2 (𝜑 → ∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐)
42 copisnmnd.p . . . 4 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
4342eqcomi 2746 . . 3 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
443, 43isnmnd 18177 . 2 (∀𝑎𝐵𝑐𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑐) ≠ 𝑐𝑀 ∉ Mnd)
4541, 44syl 17 1 (𝜑𝑀 ∉ Mnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  wnel 3046  wral 3061  wrex 3062  Vcvv 3408   class class class wbr 5053  cfv 6380  (class class class)co 7213  cmpo 7215  1c1 10730   < clt 10867  chash 13896  Basecbs 16760  +gcplusg 16802  Mndcmnd 18173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-hash 13897  df-mnd 18174
This theorem is referenced by:  cznnring  45187
  Copyright terms: Public domain W3C validator