![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsgrpnmnd | Structured version Visualization version GIF version |
Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
Ref | Expression |
---|---|
nnsgrp.m | ⊢ 𝑀 = (ℂfld ↾s ℕ) |
Ref | Expression |
---|---|
nnsgrpnmnd | ⊢ 𝑀 ∉ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 12300 | . . . 4 ⊢ ℕ ⊆ ℂ | |
2 | nnsgrp.m | . . . . 5 ⊢ 𝑀 = (ℂfld ↾s ℕ) | |
3 | 2 | cnfldsrngbas 47886 | . . . 4 ⊢ (ℕ ⊆ ℂ → ℕ = (Base‘𝑀)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℕ = (Base‘𝑀) |
5 | nnex 12301 | . . . 4 ⊢ ℕ ∈ V | |
6 | 2 | cnfldsrngadd 47887 | . . . 4 ⊢ (ℕ ∈ V → + = (+g‘𝑀)) |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
8 | 4, 7 | isnmnd 18778 | . 2 ⊢ (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
9 | 1nn 12306 | . . . 4 ⊢ 1 ∈ ℕ | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℕ) |
11 | oveq2 7458 | . . . . 5 ⊢ (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1)) | |
12 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
13 | 11, 12 | neeq12d 3008 | . . . 4 ⊢ (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
15 | nnne0 12329 | . . . . 5 ⊢ (𝑧 ∈ ℕ → 𝑧 ≠ 0) | |
16 | 15 | necomd 3002 | . . . 4 ⊢ (𝑧 ∈ ℕ → 0 ≠ 𝑧) |
17 | 1cnd 11287 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℂ) | |
18 | nncn 12303 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
19 | 17, 17, 18 | subadd2d 11668 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1)) |
20 | 1m1e0 12367 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (1 − 1) = 0) |
22 | 21 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧)) |
23 | 19, 22 | bitr3d 281 | . . . . 5 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧)) |
24 | 23 | necon3bid 2991 | . . . 4 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧)) |
25 | 16, 24 | mpbird 257 | . . 3 ⊢ (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1) |
26 | 10, 14, 25 | rspcedvd 3637 | . 2 ⊢ (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥) |
27 | 8, 26 | mprg 3073 | 1 ⊢ 𝑀 ∉ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 ‘cfv 6575 (class class class)co 7450 ℂcc 11184 0cc0 11186 1c1 11187 + caddc 11189 − cmin 11522 ℕcn 12295 Basecbs 17260 ↾s cress 17289 +gcplusg 17313 Mndcmnd 18774 ℂfldccnfld 21389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-addf 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-mnd 18775 df-cnfld 21390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |