| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsgrpnmnd | Structured version Visualization version GIF version | ||
| Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
| Ref | Expression |
|---|---|
| nnsgrp.m | ⊢ 𝑀 = (ℂfld ↾s ℕ) |
| Ref | Expression |
|---|---|
| nnsgrpnmnd | ⊢ 𝑀 ∉ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12252 | . . . 4 ⊢ ℕ ⊆ ℂ | |
| 2 | nnsgrp.m | . . . . 5 ⊢ 𝑀 = (ℂfld ↾s ℕ) | |
| 3 | 2 | cnfldsrngbas 48011 | . . . 4 ⊢ (ℕ ⊆ ℂ → ℕ = (Base‘𝑀)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℕ = (Base‘𝑀) |
| 5 | nnex 12253 | . . . 4 ⊢ ℕ ∈ V | |
| 6 | 2 | cnfldsrngadd 48012 | . . . 4 ⊢ (ℕ ∈ V → + = (+g‘𝑀)) |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
| 8 | 4, 7 | isnmnd 18719 | . 2 ⊢ (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
| 9 | 1nn 12258 | . . . 4 ⊢ 1 ∈ ℕ | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℕ) |
| 11 | oveq2 7420 | . . . . 5 ⊢ (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1)) | |
| 12 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 13 | 11, 12 | neeq12d 2992 | . . . 4 ⊢ (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 15 | nnne0 12281 | . . . . 5 ⊢ (𝑧 ∈ ℕ → 𝑧 ≠ 0) | |
| 16 | 15 | necomd 2986 | . . . 4 ⊢ (𝑧 ∈ ℕ → 0 ≠ 𝑧) |
| 17 | 1cnd 11237 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℂ) | |
| 18 | nncn 12255 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 19 | 17, 17, 18 | subadd2d 11620 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1)) |
| 20 | 1m1e0 12319 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (1 − 1) = 0) |
| 22 | 21 | eqeq1d 2736 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧)) |
| 23 | 19, 22 | bitr3d 281 | . . . . 5 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧)) |
| 24 | 23 | necon3bid 2975 | . . . 4 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧)) |
| 25 | 16, 24 | mpbird 257 | . . 3 ⊢ (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1) |
| 26 | 10, 14, 25 | rspcedvd 3607 | . 2 ⊢ (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥) |
| 27 | 8, 26 | mprg 3056 | 1 ⊢ 𝑀 ∉ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∉ wnel 3035 ∃wrex 3059 Vcvv 3463 ⊆ wss 3931 ‘cfv 6540 (class class class)co 7412 ℂcc 11134 0cc0 11136 1c1 11137 + caddc 11139 − cmin 11473 ℕcn 12247 Basecbs 17228 ↾s cress 17251 +gcplusg 17272 Mndcmnd 18715 ℂfldccnfld 21325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-addf 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-mnd 18716 df-cnfld 21326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |