Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrpnmnd Structured version   Visualization version   GIF version

Theorem nnsgrpnmnd 47234
Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrpnmnd 𝑀 ∉ Mnd

Proof of Theorem nnsgrpnmnd
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsscn 12241 . . . 4 ℕ ⊆ ℂ
2 nnsgrp.m . . . . 5 𝑀 = (ℂflds ℕ)
32cnfldsrngbas 47217 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
41, 3ax-mp 5 . . 3 ℕ = (Base‘𝑀)
5 nnex 12242 . . . 4 ℕ ∈ V
62cnfldsrngadd 47218 . . . 4 (ℕ ∈ V → + = (+g𝑀))
75, 6ax-mp 5 . . 3 + = (+g𝑀)
84, 7isnmnd 18691 . 2 (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
9 1nn 12247 . . . 4 1 ∈ ℕ
109a1i 11 . . 3 (𝑧 ∈ ℕ → 1 ∈ ℕ)
11 oveq2 7422 . . . . 5 (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1))
12 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
1311, 12neeq12d 2998 . . . 4 (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
1413adantl 481 . . 3 ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
15 nnne0 12270 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1615necomd 2992 . . . 4 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
17 1cnd 11233 . . . . . . 7 (𝑧 ∈ ℕ → 1 ∈ ℂ)
18 nncn 12244 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1917, 17, 18subadd2d 11614 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1))
20 1m1e0 12308 . . . . . . . 8 (1 − 1) = 0
2120a1i 11 . . . . . . 7 (𝑧 ∈ ℕ → (1 − 1) = 0)
2221eqeq1d 2730 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧))
2319, 22bitr3d 281 . . . . 5 (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧))
2423necon3bid 2981 . . . 4 (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧))
2516, 24mpbird 257 . . 3 (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1)
2610, 14, 25rspcedvd 3610 . 2 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥)
278, 26mprg 3063 1 𝑀 ∉ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  wne 2936  wnel 3042  wrex 3066  Vcvv 3470  wss 3945  cfv 6542  (class class class)co 7414  cc 11130  0cc0 11132  1c1 11133   + caddc 11135  cmin 11468  cn 12236  Basecbs 17173  s cress 17202  +gcplusg 17226  Mndcmnd 18687  fldccnfld 21272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-mnd 18688  df-cnfld 21273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator