| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsgrpnmnd | Structured version Visualization version GIF version | ||
| Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
| Ref | Expression |
|---|---|
| nnsgrp.m | ⊢ 𝑀 = (ℂfld ↾s ℕ) |
| Ref | Expression |
|---|---|
| nnsgrpnmnd | ⊢ 𝑀 ∉ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12202 | . . . 4 ⊢ ℕ ⊆ ℂ | |
| 2 | nnsgrp.m | . . . . 5 ⊢ 𝑀 = (ℂfld ↾s ℕ) | |
| 3 | 2 | cnfldsrngbas 48078 | . . . 4 ⊢ (ℕ ⊆ ℂ → ℕ = (Base‘𝑀)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℕ = (Base‘𝑀) |
| 5 | nnex 12203 | . . . 4 ⊢ ℕ ∈ V | |
| 6 | 2 | cnfldsrngadd 48079 | . . . 4 ⊢ (ℕ ∈ V → + = (+g‘𝑀)) |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
| 8 | 4, 7 | isnmnd 18671 | . 2 ⊢ (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
| 9 | 1nn 12208 | . . . 4 ⊢ 1 ∈ ℕ | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℕ) |
| 11 | oveq2 7402 | . . . . 5 ⊢ (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1)) | |
| 12 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 13 | 11, 12 | neeq12d 2988 | . . . 4 ⊢ (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 15 | nnne0 12231 | . . . . 5 ⊢ (𝑧 ∈ ℕ → 𝑧 ≠ 0) | |
| 16 | 15 | necomd 2982 | . . . 4 ⊢ (𝑧 ∈ ℕ → 0 ≠ 𝑧) |
| 17 | 1cnd 11187 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℂ) | |
| 18 | nncn 12205 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 19 | 17, 17, 18 | subadd2d 11570 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1)) |
| 20 | 1m1e0 12269 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (1 − 1) = 0) |
| 22 | 21 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧)) |
| 23 | 19, 22 | bitr3d 281 | . . . . 5 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧)) |
| 24 | 23 | necon3bid 2971 | . . . 4 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧)) |
| 25 | 16, 24 | mpbird 257 | . . 3 ⊢ (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1) |
| 26 | 10, 14, 25 | rspcedvd 3599 | . 2 ⊢ (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥) |
| 27 | 8, 26 | mprg 3052 | 1 ⊢ 𝑀 ∉ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∉ wnel 3031 ∃wrex 3055 Vcvv 3455 ⊆ wss 3922 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 0cc0 11086 1c1 11087 + caddc 11089 − cmin 11423 ℕcn 12197 Basecbs 17185 ↾s cress 17206 +gcplusg 17226 Mndcmnd 18667 ℂfldccnfld 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-mnd 18668 df-cnfld 21271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |