Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrpnmnd Structured version   Visualization version   GIF version

Theorem nnsgrpnmnd 47351
Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrpnmnd 𝑀 ∉ Mnd

Proof of Theorem nnsgrpnmnd
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsscn 12245 . . . 4 ℕ ⊆ ℂ
2 nnsgrp.m . . . . 5 𝑀 = (ℂflds ℕ)
32cnfldsrngbas 47334 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
41, 3ax-mp 5 . . 3 ℕ = (Base‘𝑀)
5 nnex 12246 . . . 4 ℕ ∈ V
62cnfldsrngadd 47335 . . . 4 (ℕ ∈ V → + = (+g𝑀))
75, 6ax-mp 5 . . 3 + = (+g𝑀)
84, 7isnmnd 18695 . 2 (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
9 1nn 12251 . . . 4 1 ∈ ℕ
109a1i 11 . . 3 (𝑧 ∈ ℕ → 1 ∈ ℕ)
11 oveq2 7423 . . . . 5 (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1))
12 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
1311, 12neeq12d 2992 . . . 4 (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
1413adantl 480 . . 3 ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
15 nnne0 12274 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1615necomd 2986 . . . 4 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
17 1cnd 11237 . . . . . . 7 (𝑧 ∈ ℕ → 1 ∈ ℂ)
18 nncn 12248 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1917, 17, 18subadd2d 11618 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1))
20 1m1e0 12312 . . . . . . . 8 (1 − 1) = 0
2120a1i 11 . . . . . . 7 (𝑧 ∈ ℕ → (1 − 1) = 0)
2221eqeq1d 2727 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧))
2319, 22bitr3d 280 . . . . 5 (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧))
2423necon3bid 2975 . . . 4 (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧))
2516, 24mpbird 256 . . 3 (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1)
2610, 14, 25rspcedvd 3604 . 2 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥)
278, 26mprg 3057 1 𝑀 ∉ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  wne 2930  wnel 3036  wrex 3060  Vcvv 3463  wss 3940  cfv 6542  (class class class)co 7415  cc 11134  0cc0 11136  1c1 11137   + caddc 11139  cmin 11472  cn 12240  Basecbs 17177  s cress 17206  +gcplusg 17230  Mndcmnd 18691  fldccnfld 21281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-addf 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-starv 17245  df-tset 17249  df-ple 17250  df-ds 17252  df-unif 17253  df-mnd 18692  df-cnfld 21282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator