Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrpnmnd Structured version   Visualization version   GIF version

Theorem nnsgrpnmnd 48043
Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrpnmnd 𝑀 ∉ Mnd

Proof of Theorem nnsgrpnmnd
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsscn 12275 . . . 4 ℕ ⊆ ℂ
2 nnsgrp.m . . . . 5 𝑀 = (ℂflds ℕ)
32cnfldsrngbas 48026 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
41, 3ax-mp 5 . . 3 ℕ = (Base‘𝑀)
5 nnex 12276 . . . 4 ℕ ∈ V
62cnfldsrngadd 48027 . . . 4 (ℕ ∈ V → + = (+g𝑀))
75, 6ax-mp 5 . . 3 + = (+g𝑀)
84, 7isnmnd 18770 . 2 (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
9 1nn 12281 . . . 4 1 ∈ ℕ
109a1i 11 . . 3 (𝑧 ∈ ℕ → 1 ∈ ℕ)
11 oveq2 7443 . . . . 5 (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1))
12 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
1311, 12neeq12d 3001 . . . 4 (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
1413adantl 481 . . 3 ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
15 nnne0 12304 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1615necomd 2995 . . . 4 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
17 1cnd 11260 . . . . . . 7 (𝑧 ∈ ℕ → 1 ∈ ℂ)
18 nncn 12278 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1917, 17, 18subadd2d 11643 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1))
20 1m1e0 12342 . . . . . . . 8 (1 − 1) = 0
2120a1i 11 . . . . . . 7 (𝑧 ∈ ℕ → (1 − 1) = 0)
2221eqeq1d 2738 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧))
2319, 22bitr3d 281 . . . . 5 (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧))
2423necon3bid 2984 . . . 4 (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧))
2516, 24mpbird 257 . . 3 (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1)
2610, 14, 25rspcedvd 3625 . 2 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥)
278, 26mprg 3066 1 𝑀 ∉ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1538  wcel 2107  wne 2939  wnel 3045  wrex 3069  Vcvv 3479  wss 3964  cfv 6566  (class class class)co 7435  cc 11157  0cc0 11159  1c1 11160   + caddc 11162  cmin 11496  cn 12270  Basecbs 17251  s cress 17280  +gcplusg 17304  Mndcmnd 18766  fldccnfld 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-addf 11238
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-z 12618  df-dec 12738  df-uz 12883  df-fz 13551  df-struct 17187  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-ress 17281  df-plusg 17317  df-mulr 17318  df-starv 17319  df-tset 17323  df-ple 17324  df-ds 17326  df-unif 17327  df-mnd 18767  df-cnfld 21389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator