| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsgrpnmnd | Structured version Visualization version GIF version | ||
| Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
| Ref | Expression |
|---|---|
| nnsgrp.m | ⊢ 𝑀 = (ℂfld ↾s ℕ) |
| Ref | Expression |
|---|---|
| nnsgrpnmnd | ⊢ 𝑀 ∉ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12133 | . . . 4 ⊢ ℕ ⊆ ℂ | |
| 2 | nnsgrp.m | . . . . 5 ⊢ 𝑀 = (ℂfld ↾s ℕ) | |
| 3 | 2 | cnfldsrngbas 48155 | . . . 4 ⊢ (ℕ ⊆ ℂ → ℕ = (Base‘𝑀)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℕ = (Base‘𝑀) |
| 5 | nnex 12134 | . . . 4 ⊢ ℕ ∈ V | |
| 6 | 2 | cnfldsrngadd 48156 | . . . 4 ⊢ (ℕ ∈ V → + = (+g‘𝑀)) |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
| 8 | 4, 7 | isnmnd 18612 | . 2 ⊢ (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
| 9 | 1nn 12139 | . . . 4 ⊢ 1 ∈ ℕ | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℕ) |
| 11 | oveq2 7357 | . . . . 5 ⊢ (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1)) | |
| 12 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 13 | 11, 12 | neeq12d 2986 | . . . 4 ⊢ (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 15 | nnne0 12162 | . . . . 5 ⊢ (𝑧 ∈ ℕ → 𝑧 ≠ 0) | |
| 16 | 15 | necomd 2980 | . . . 4 ⊢ (𝑧 ∈ ℕ → 0 ≠ 𝑧) |
| 17 | 1cnd 11110 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℂ) | |
| 18 | nncn 12136 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 19 | 17, 17, 18 | subadd2d 11494 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1)) |
| 20 | 1m1e0 12200 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (1 − 1) = 0) |
| 22 | 21 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧)) |
| 23 | 19, 22 | bitr3d 281 | . . . . 5 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧)) |
| 24 | 23 | necon3bid 2969 | . . . 4 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧)) |
| 25 | 16, 24 | mpbird 257 | . . 3 ⊢ (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1) |
| 26 | 10, 14, 25 | rspcedvd 3579 | . 2 ⊢ (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥) |
| 27 | 8, 26 | mprg 3050 | 1 ⊢ 𝑀 ∉ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 − cmin 11347 ℕcn 12128 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Mndcmnd 18608 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-mnd 18609 df-cnfld 21262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |