| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsgrpnmnd | Structured version Visualization version GIF version | ||
| Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
| Ref | Expression |
|---|---|
| nnsgrp.m | ⊢ 𝑀 = (ℂfld ↾s ℕ) |
| Ref | Expression |
|---|---|
| nnsgrpnmnd | ⊢ 𝑀 ∉ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12130 | . . . 4 ⊢ ℕ ⊆ ℂ | |
| 2 | nnsgrp.m | . . . . 5 ⊢ 𝑀 = (ℂfld ↾s ℕ) | |
| 3 | 2 | cnfldsrngbas 48271 | . . . 4 ⊢ (ℕ ⊆ ℂ → ℕ = (Base‘𝑀)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ℕ = (Base‘𝑀) |
| 5 | nnex 12131 | . . . 4 ⊢ ℕ ∈ V | |
| 6 | 2 | cnfldsrngadd 48272 | . . . 4 ⊢ (ℕ ∈ V → + = (+g‘𝑀)) |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
| 8 | 4, 7 | isnmnd 18646 | . 2 ⊢ (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥 → 𝑀 ∉ Mnd) |
| 9 | 1nn 12136 | . . . 4 ⊢ 1 ∈ ℕ | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℕ) |
| 11 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1)) | |
| 12 | id 22 | . . . . 5 ⊢ (𝑥 = 1 → 𝑥 = 1) | |
| 13 | 11, 12 | neeq12d 2989 | . . . 4 ⊢ (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1)) |
| 15 | nnne0 12159 | . . . . 5 ⊢ (𝑧 ∈ ℕ → 𝑧 ≠ 0) | |
| 16 | 15 | necomd 2983 | . . . 4 ⊢ (𝑧 ∈ ℕ → 0 ≠ 𝑧) |
| 17 | 1cnd 11107 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℂ) | |
| 18 | nncn 12133 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 19 | 17, 17, 18 | subadd2d 11491 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1)) |
| 20 | 1m1e0 12197 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (1 − 1) = 0) |
| 22 | 21 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧)) |
| 23 | 19, 22 | bitr3d 281 | . . . . 5 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧)) |
| 24 | 23 | necon3bid 2972 | . . . 4 ⊢ (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧)) |
| 25 | 16, 24 | mpbird 257 | . . 3 ⊢ (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1) |
| 26 | 10, 14, 25 | rspcedvd 3574 | . 2 ⊢ (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥) |
| 27 | 8, 26 | mprg 3053 | 1 ⊢ 𝑀 ∉ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 − cmin 11344 ℕcn 12125 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Mndcmnd 18642 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-mnd 18643 df-cnfld 21292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |