Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrpnmnd Structured version   Visualization version   GIF version

Theorem nnsgrpnmnd 45048
Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrpnmnd 𝑀 ∉ Mnd

Proof of Theorem nnsgrpnmnd
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsscn 11835 . . . 4 ℕ ⊆ ℂ
2 nnsgrp.m . . . . 5 𝑀 = (ℂflds ℕ)
32cnfldsrngbas 44999 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
41, 3ax-mp 5 . . 3 ℕ = (Base‘𝑀)
5 nnex 11836 . . . 4 ℕ ∈ V
62cnfldsrngadd 45000 . . . 4 (ℕ ∈ V → + = (+g𝑀))
75, 6ax-mp 5 . . 3 + = (+g𝑀)
84, 7isnmnd 18177 . 2 (∀𝑧 ∈ ℕ ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
9 1nn 11841 . . . 4 1 ∈ ℕ
109a1i 11 . . 3 (𝑧 ∈ ℕ → 1 ∈ ℕ)
11 oveq2 7221 . . . . 5 (𝑥 = 1 → (𝑧 + 𝑥) = (𝑧 + 1))
12 id 22 . . . . 5 (𝑥 = 1 → 𝑥 = 1)
1311, 12neeq12d 3002 . . . 4 (𝑥 = 1 → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
1413adantl 485 . . 3 ((𝑧 ∈ ℕ ∧ 𝑥 = 1) → ((𝑧 + 𝑥) ≠ 𝑥 ↔ (𝑧 + 1) ≠ 1))
15 nnne0 11864 . . . . 5 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
1615necomd 2996 . . . 4 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
17 1cnd 10828 . . . . . . 7 (𝑧 ∈ ℕ → 1 ∈ ℂ)
18 nncn 11838 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
1917, 17, 18subadd2d 11208 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ (𝑧 + 1) = 1))
20 1m1e0 11902 . . . . . . . 8 (1 − 1) = 0
2120a1i 11 . . . . . . 7 (𝑧 ∈ ℕ → (1 − 1) = 0)
2221eqeq1d 2739 . . . . . 6 (𝑧 ∈ ℕ → ((1 − 1) = 𝑧 ↔ 0 = 𝑧))
2319, 22bitr3d 284 . . . . 5 (𝑧 ∈ ℕ → ((𝑧 + 1) = 1 ↔ 0 = 𝑧))
2423necon3bid 2985 . . . 4 (𝑧 ∈ ℕ → ((𝑧 + 1) ≠ 1 ↔ 0 ≠ 𝑧))
2516, 24mpbird 260 . . 3 (𝑧 ∈ ℕ → (𝑧 + 1) ≠ 1)
2610, 14, 25rspcedvd 3540 . 2 (𝑧 ∈ ℕ → ∃𝑥 ∈ ℕ (𝑧 + 𝑥) ≠ 𝑥)
278, 26mprg 3075 1 𝑀 ∉ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wcel 2110  wne 2940  wnel 3046  wrex 3062  Vcvv 3408  wss 3866  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732  cmin 11062  cn 11830  Basecbs 16760  s cress 16784  +gcplusg 16802  Mndcmnd 18173  fldccnfld 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-addf 10808
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-mnd 18174  df-cnfld 20364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator