MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finnisoeu Structured version   Visualization version   GIF version

Theorem finnisoeu 9800
Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
finnisoeu ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓

Proof of Theorem finnisoeu
StepHypRef Expression
1 eqid 2738 . . . . 5 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
21oiexg 9224 . . . 4 (𝐴 ∈ Fin → OrdIso(𝑅, 𝐴) ∈ V)
32adantl 481 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → OrdIso(𝑅, 𝐴) ∈ V)
4 simpr 484 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
5 wofi 8993 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
61oiiso 9226 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
74, 5, 6syl2anc 583 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
81oien 9227 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
94, 5, 8syl2anc 583 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
10 ficardid 9651 . . . . . . . . 9 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
1110adantl 481 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (card‘𝐴) ≈ 𝐴)
1211ensymd 8746 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ≈ (card‘𝐴))
13 entr 8747 . . . . . . 7 ((dom OrdIso(𝑅, 𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴)) → dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴))
149, 12, 13syl2anc 583 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴))
151oion 9225 . . . . . . . 8 (𝐴 ∈ Fin → dom OrdIso(𝑅, 𝐴) ∈ On)
1615adantl 481 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) ∈ On)
17 ficardom 9650 . . . . . . . 8 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
1817adantl 481 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (card‘𝐴) ∈ ω)
19 onomeneq 8943 . . . . . . 7 ((dom OrdIso(𝑅, 𝐴) ∈ On ∧ (card‘𝐴) ∈ ω) → (dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴) ↔ dom OrdIso(𝑅, 𝐴) = (card‘𝐴)))
2016, 18, 19syl2anc 583 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴) ↔ dom OrdIso(𝑅, 𝐴) = (card‘𝐴)))
2114, 20mpbid 231 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) = (card‘𝐴))
22 isoeq4 7171 . . . . 5 (dom OrdIso(𝑅, 𝐴) = (card‘𝐴) → (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴)))
2321, 22syl 17 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴)))
247, 23mpbid 231 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴))
25 isoeq1 7168 . . 3 (𝑓 = OrdIso(𝑅, 𝐴) → (𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴)))
263, 24, 25spcedv 3527 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
27 wemoiso2 7790 . . 3 (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
285, 27syl 17 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃*𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
29 df-eu 2569 . 2 (∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴) ↔ (∃𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴) ∧ ∃*𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴)))
3026, 28, 29sylanbrc 582 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  ∃!weu 2568  Vcvv 3422   class class class wbr 5070   E cep 5485   Or wor 5493   We wwe 5534  dom cdm 5580  Oncon0 6251  cfv 6418   Isom wiso 6419  ωcom 7687  cen 8688  Fincfn 8691  OrdIsocoi 9198  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-card 9628
This theorem is referenced by:  iunfictbso  9801
  Copyright terms: Public domain W3C validator