MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finnisoeu Structured version   Visualization version   GIF version

Theorem finnisoeu 10107
Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
finnisoeu ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ βˆƒ!𝑓 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓

Proof of Theorem finnisoeu
StepHypRef Expression
1 eqid 2732 . . . . 5 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
21oiexg 9529 . . . 4 (𝐴 ∈ Fin β†’ OrdIso(𝑅, 𝐴) ∈ V)
32adantl 482 . . 3 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ OrdIso(𝑅, 𝐴) ∈ V)
4 simpr 485 . . . . 5 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ 𝐴 ∈ Fin)
5 wofi 9291 . . . . 5 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ 𝑅 We 𝐴)
61oiiso 9531 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) β†’ OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
74, 5, 6syl2anc 584 . . . 4 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
81oien 9532 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) β†’ dom OrdIso(𝑅, 𝐴) β‰ˆ 𝐴)
94, 5, 8syl2anc 584 . . . . . . 7 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ dom OrdIso(𝑅, 𝐴) β‰ˆ 𝐴)
10 ficardid 9956 . . . . . . . . 9 (𝐴 ∈ Fin β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
1110adantl 482 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ (cardβ€˜π΄) β‰ˆ 𝐴)
1211ensymd 9000 . . . . . . 7 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ 𝐴 β‰ˆ (cardβ€˜π΄))
13 entr 9001 . . . . . . 7 ((dom OrdIso(𝑅, 𝐴) β‰ˆ 𝐴 ∧ 𝐴 β‰ˆ (cardβ€˜π΄)) β†’ dom OrdIso(𝑅, 𝐴) β‰ˆ (cardβ€˜π΄))
149, 12, 13syl2anc 584 . . . . . 6 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ dom OrdIso(𝑅, 𝐴) β‰ˆ (cardβ€˜π΄))
151oion 9530 . . . . . . . 8 (𝐴 ∈ Fin β†’ dom OrdIso(𝑅, 𝐴) ∈ On)
1615adantl 482 . . . . . . 7 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ dom OrdIso(𝑅, 𝐴) ∈ On)
17 ficardom 9955 . . . . . . . 8 (𝐴 ∈ Fin β†’ (cardβ€˜π΄) ∈ Ο‰)
1817adantl 482 . . . . . . 7 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ (cardβ€˜π΄) ∈ Ο‰)
19 onomeneq 9227 . . . . . . 7 ((dom OrdIso(𝑅, 𝐴) ∈ On ∧ (cardβ€˜π΄) ∈ Ο‰) β†’ (dom OrdIso(𝑅, 𝐴) β‰ˆ (cardβ€˜π΄) ↔ dom OrdIso(𝑅, 𝐴) = (cardβ€˜π΄)))
2016, 18, 19syl2anc 584 . . . . . 6 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ (dom OrdIso(𝑅, 𝐴) β‰ˆ (cardβ€˜π΄) ↔ dom OrdIso(𝑅, 𝐴) = (cardβ€˜π΄)))
2114, 20mpbid 231 . . . . 5 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ dom OrdIso(𝑅, 𝐴) = (cardβ€˜π΄))
22 isoeq4 7316 . . . . 5 (dom OrdIso(𝑅, 𝐴) = (cardβ€˜π΄) β†’ (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((cardβ€˜π΄), 𝐴)))
2321, 22syl 17 . . . 4 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((cardβ€˜π΄), 𝐴)))
247, 23mpbid 231 . . 3 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((cardβ€˜π΄), 𝐴))
25 isoeq1 7313 . . 3 (𝑓 = OrdIso(𝑅, 𝐴) β†’ (𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((cardβ€˜π΄), 𝐴)))
263, 24, 25spcedv 3588 . 2 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ βˆƒπ‘“ 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴))
27 wemoiso2 7960 . . 3 (𝑅 We 𝐴 β†’ βˆƒ*𝑓 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴))
285, 27syl 17 . 2 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ βˆƒ*𝑓 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴))
29 df-eu 2563 . 2 (βˆƒ!𝑓 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴) ↔ (βˆƒπ‘“ 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴) ∧ βˆƒ*𝑓 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴)))
3026, 28, 29sylanbrc 583 1 ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) β†’ βˆƒ!𝑓 𝑓 Isom E , 𝑅 ((cardβ€˜π΄), 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆƒ*wmo 2532  βˆƒ!weu 2562  Vcvv 3474   class class class wbr 5148   E cep 5579   Or wor 5587   We wwe 5630  dom cdm 5676  Oncon0 6364  β€˜cfv 6543   Isom wiso 6544  Ο‰com 7854   β‰ˆ cen 8935  Fincfn 8938  OrdIsocoi 9503  cardccrd 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-oi 9504  df-card 9933
This theorem is referenced by:  iunfictbso  10108
  Copyright terms: Public domain W3C validator