MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finnisoeu Structured version   Visualization version   GIF version

Theorem finnisoeu 9135
Description: A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
finnisoeu ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓

Proof of Theorem finnisoeu
StepHypRef Expression
1 eqid 2771 . . . . 5 OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐴)
21oiexg 8595 . . . 4 (𝐴 ∈ Fin → OrdIso(𝑅, 𝐴) ∈ V)
32adantl 467 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → OrdIso(𝑅, 𝐴) ∈ V)
4 simpr 471 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
5 wofi 8364 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 We 𝐴)
61oiiso 8597 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
74, 5, 6syl2anc 565 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴))
81oien 8598 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑅 We 𝐴) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
94, 5, 8syl2anc 565 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) ≈ 𝐴)
10 ficardid 8987 . . . . . . . . 9 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
1110adantl 467 . . . . . . . 8 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (card‘𝐴) ≈ 𝐴)
1211ensymd 8159 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝐴 ≈ (card‘𝐴))
13 entr 8160 . . . . . . 7 ((dom OrdIso(𝑅, 𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴)) → dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴))
149, 12, 13syl2anc 565 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴))
151oion 8596 . . . . . . . 8 (𝐴 ∈ Fin → dom OrdIso(𝑅, 𝐴) ∈ On)
1615adantl 467 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) ∈ On)
17 ficardom 8986 . . . . . . . 8 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
1817adantl 467 . . . . . . 7 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (card‘𝐴) ∈ ω)
19 onomeneq 8305 . . . . . . 7 ((dom OrdIso(𝑅, 𝐴) ∈ On ∧ (card‘𝐴) ∈ ω) → (dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴) ↔ dom OrdIso(𝑅, 𝐴) = (card‘𝐴)))
2016, 18, 19syl2anc 565 . . . . . 6 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (dom OrdIso(𝑅, 𝐴) ≈ (card‘𝐴) ↔ dom OrdIso(𝑅, 𝐴) = (card‘𝐴)))
2114, 20mpbid 222 . . . . 5 ((𝑅 Or 𝐴𝐴 ∈ Fin) → dom OrdIso(𝑅, 𝐴) = (card‘𝐴))
22 isoeq4 6712 . . . . 5 (dom OrdIso(𝑅, 𝐴) = (card‘𝐴) → (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴)))
2321, 22syl 17 . . . 4 ((𝑅 Or 𝐴𝐴 ∈ Fin) → (OrdIso(𝑅, 𝐴) Isom E , 𝑅 (dom OrdIso(𝑅, 𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴)))
247, 23mpbid 222 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴))
25 isoeq1 6709 . . . 4 (𝑓 = OrdIso(𝑅, 𝐴) → (𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴) ↔ OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴)))
2625spcegv 3445 . . 3 (OrdIso(𝑅, 𝐴) ∈ V → (OrdIso(𝑅, 𝐴) Isom E , 𝑅 ((card‘𝐴), 𝐴) → ∃𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴)))
273, 24, 26sylc 65 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
28 wemoiso2 7300 . . 3 (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
295, 28syl 17 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃*𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
30 eu5 2644 . 2 (∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴) ↔ (∃𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴) ∧ ∃*𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴)))
3127, 29, 30sylanbrc 564 1 ((𝑅 Or 𝐴𝐴 ∈ Fin) → ∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wex 1852  wcel 2145  ∃!weu 2618  ∃*wmo 2619  Vcvv 3351   class class class wbr 4786   E cep 5161   Or wor 5169   We wwe 5207  dom cdm 5249  Oncon0 5866  cfv 6031   Isom wiso 6032  ωcom 7211  cen 8105  Fincfn 8108  OrdIsocoi 8569  cardccrd 8960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-om 7212  df-wrecs 7558  df-recs 7620  df-1o 7712  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-oi 8570  df-card 8964
This theorem is referenced by:  iunfictbso  9136
  Copyright terms: Public domain W3C validator