Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem1 Structured version   Visualization version   GIF version

Theorem erdszelem1 35213
Description: Lemma for erdsze 35224. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
Assertion
Ref Expression
erdszelem1 (𝑋𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑂   𝑦,𝑋
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem erdszelem1
StepHypRef Expression
1 ovex 7438 . . . 4 (1...𝐴) ∈ V
21elpw2 5304 . . 3 (𝑋 ∈ 𝒫 (1...𝐴) ↔ 𝑋 ⊆ (1...𝐴))
32anbi1i 624 . 2 ((𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
4 reseq2 5961 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
5 isoeq1 7310 . . . . . 6 ((𝐹𝑦) = (𝐹𝑋) → ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑦, (𝐹𝑦))))
64, 5syl 17 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑦, (𝐹𝑦))))
7 isoeq4 7313 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑋) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑦))))
8 imaeq2 6043 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
9 isoeq5 7314 . . . . . 6 ((𝐹𝑦) = (𝐹𝑋) → ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋))))
108, 9syl 17 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋))))
116, 7, 103bitrd 305 . . . 4 (𝑦 = 𝑋 → ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋))))
12 eleq2 2823 . . . 4 (𝑦 = 𝑋 → (𝐴𝑦𝐴𝑋))
1311, 12anbi12d 632 . . 3 (𝑦 = 𝑋 → (((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦) ↔ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
14 erdszelem1.1 . . 3 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1513, 14elrab2 3674 . 2 (𝑋𝑆 ↔ (𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
16 3anass 1094 . 2 ((𝑋 ⊆ (1...𝐴) ∧ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
173, 15, 163bitr4i 303 1 (𝑋𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  wss 3926  𝒫 cpw 4575  cres 5656  cima 5657   Isom wiso 6532  (class class class)co 7405  1c1 11130   < clt 11269  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-ov 7408
This theorem is referenced by:  erdszelem2  35214  erdszelem4  35216  erdszelem7  35219  erdszelem8  35220
  Copyright terms: Public domain W3C validator