![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem1 | Structured version Visualization version GIF version |
Description: Lemma for erdsze 34721. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
Ref | Expression |
---|---|
erdszelem1 | ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7438 | . . . 4 ⊢ (1...𝐴) ∈ V | |
2 | 1 | elpw2 5338 | . . 3 ⊢ (𝑋 ∈ 𝒫 (1...𝐴) ↔ 𝑋 ⊆ (1...𝐴)) |
3 | 2 | anbi1i 623 | . 2 ⊢ ((𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
4 | reseq2 5970 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝑋)) | |
5 | isoeq1 7310 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑦) = (𝐹 ↾ 𝑋) → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)))) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)))) |
7 | isoeq4 7313 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)))) | |
8 | imaeq2 6049 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐹 “ 𝑦) = (𝐹 “ 𝑋)) | |
9 | isoeq5 7314 | . . . . . 6 ⊢ ((𝐹 “ 𝑦) = (𝐹 “ 𝑋) → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) |
11 | 6, 7, 10 | 3bitrd 305 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) |
12 | eleq2 2816 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑋)) | |
13 | 11, 12 | anbi12d 630 | . . 3 ⊢ (𝑦 = 𝑋 → (((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦) ↔ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
14 | erdszelem1.1 | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
15 | 13, 14 | elrab2 3681 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
16 | 3anass 1092 | . 2 ⊢ ((𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) | |
17 | 3, 15, 16 | 3bitr4i 303 | 1 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3426 ⊆ wss 3943 𝒫 cpw 4597 ↾ cres 5671 “ cima 5672 Isom wiso 6538 (class class class)co 7405 1c1 11113 < clt 11252 ...cfz 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-ov 7408 |
This theorem is referenced by: erdszelem2 34711 erdszelem4 34713 erdszelem7 34716 erdszelem8 34717 |
Copyright terms: Public domain | W3C validator |