![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem1 | Structured version Visualization version GIF version |
Description: Lemma for erdsze 31783. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
Ref | Expression |
---|---|
erdszelem1 | ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6954 | . . . 4 ⊢ (1...𝐴) ∈ V | |
2 | 1 | elpw2 5062 | . . 3 ⊢ (𝑋 ∈ 𝒫 (1...𝐴) ↔ 𝑋 ⊆ (1...𝐴)) |
3 | 2 | anbi1i 617 | . 2 ⊢ ((𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
4 | reseq2 5637 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝑋)) | |
5 | isoeq1 6839 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑦) = (𝐹 ↾ 𝑋) → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)))) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)))) |
7 | isoeq4 6842 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)))) | |
8 | imaeq2 5716 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐹 “ 𝑦) = (𝐹 “ 𝑋)) | |
9 | isoeq5 6843 | . . . . . 6 ⊢ ((𝐹 “ 𝑦) = (𝐹 “ 𝑋) → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) |
11 | 6, 7, 10 | 3bitrd 297 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) |
12 | eleq2 2848 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑋)) | |
13 | 11, 12 | anbi12d 624 | . . 3 ⊢ (𝑦 = 𝑋 → (((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦) ↔ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
14 | erdszelem1.1 | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
15 | 13, 14 | elrab2 3576 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
16 | 3anass 1079 | . 2 ⊢ ((𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) | |
17 | 3, 15, 16 | 3bitr4i 295 | 1 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {crab 3094 ⊆ wss 3792 𝒫 cpw 4379 ↾ cres 5357 “ cima 5358 Isom wiso 6136 (class class class)co 6922 1c1 10273 < clt 10411 ...cfz 12643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-ov 6925 |
This theorem is referenced by: erdszelem2 31773 erdszelem4 31775 erdszelem7 31778 erdszelem8 31779 |
Copyright terms: Public domain | W3C validator |