Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem1 Structured version   Visualization version   GIF version

Theorem erdszelem1 35178
Description: Lemma for erdsze 35189. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
Assertion
Ref Expression
erdszelem1 (𝑋𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑂   𝑦,𝑋
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem erdszelem1
StepHypRef Expression
1 ovex 7420 . . . 4 (1...𝐴) ∈ V
21elpw2 5289 . . 3 (𝑋 ∈ 𝒫 (1...𝐴) ↔ 𝑋 ⊆ (1...𝐴))
32anbi1i 624 . 2 ((𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
4 reseq2 5945 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
5 isoeq1 7292 . . . . . 6 ((𝐹𝑦) = (𝐹𝑋) → ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑦, (𝐹𝑦))))
64, 5syl 17 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑦, (𝐹𝑦))))
7 isoeq4 7295 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑋) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑦))))
8 imaeq2 6027 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
9 isoeq5 7296 . . . . . 6 ((𝐹𝑦) = (𝐹𝑋) → ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋))))
108, 9syl 17 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋))))
116, 7, 103bitrd 305 . . . 4 (𝑦 = 𝑋 → ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ↔ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋))))
12 eleq2 2817 . . . 4 (𝑦 = 𝑋 → (𝐴𝑦𝐴𝑋))
1311, 12anbi12d 632 . . 3 (𝑦 = 𝑋 → (((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦) ↔ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
14 erdszelem1.1 . . 3 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1513, 14elrab2 3662 . 2 (𝑋𝑆 ↔ (𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
16 3anass 1094 . 2 ((𝑋 ⊆ (1...𝐴) ∧ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋)))
173, 15, 163bitr4i 303 1 (𝑋𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹𝑋) Isom < , 𝑂 (𝑋, (𝐹𝑋)) ∧ 𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  wss 3914  𝒫 cpw 4563  cres 5640  cima 5641   Isom wiso 6512  (class class class)co 7387  1c1 11069   < clt 11208  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-ov 7390
This theorem is referenced by:  erdszelem2  35179  erdszelem4  35181  erdszelem7  35184  erdszelem8  35185
  Copyright terms: Public domain W3C validator