Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze Structured version   Visualization version   GIF version

Theorem erdsze 35170
Description: The Erdős-Szekeres theorem. For any injective sequence 𝐹 on the reals of length at least (𝑅 − 1) · (𝑆 − 1) + 1, there is either a subsequence of length at least 𝑅 on which 𝐹 is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least 𝑆 on which 𝐹 is decreasing (i.e. a < , < order isomorphism, recalling that < is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdsze.r (𝜑𝑅 ∈ ℕ)
erdsze.s (𝜑𝑆 ∈ ℕ)
erdsze.l (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdsze (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐹,𝑠   𝑅,𝑠   𝑁,𝑠   𝜑,𝑠   𝑆,𝑠

Proof of Theorem erdsze
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . 2 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . 2 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 reseq2 6004 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
4 isoeq1 7353 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
53, 4syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
6 isoeq4 7356 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
7 imaeq2 6085 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8 isoeq5 7357 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
97, 8syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
105, 6, 93bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
11 elequ2 2123 . . . . . . . 8 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
1210, 11anbi12d 631 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
1312cbvrabv 3454 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
14 oveq2 7456 . . . . . . . 8 (𝑧 = 𝑥 → (1...𝑧) = (1...𝑥))
1514pweqd 4639 . . . . . . 7 (𝑧 = 𝑥 → 𝒫 (1...𝑧) = 𝒫 (1...𝑥))
16 elequ1 2115 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
1716anbi2d 629 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
1815, 17rabeqbidv 3462 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
1913, 18eqtrid 2792 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
2019imaeq2d 6089 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
2120supeq1d 9515 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
2221cbvmptv 5279 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
23 isoeq1 7353 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
243, 23syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
25 isoeq4 7356 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
26 isoeq5 7357 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
277, 26syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2824, 25, 273bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2928, 11anbi12d 631 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
3029cbvrabv 3454 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
3116anbi2d 629 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
3215, 31rabeqbidv 3462 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3330, 32eqtrid 2792 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3433imaeq2d 6089 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
3534supeq1d 9515 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
3635cbvmptv 5279 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
37 eqid 2740 . 2 (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩) = (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩)
38 erdsze.r . 2 (𝜑𝑅 ∈ ℕ)
39 erdsze.s . 2 (𝜑𝑆 ∈ ℕ)
40 erdsze.l . 2 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
411, 2, 22, 36, 37, 38, 39, 40erdszelem11 35169 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  𝒫 cpw 4622  cop 4654   class class class wbr 5166  cmpt 5249  ccnv 5699  cres 5702  cima 5703  1-1wf1 6570  cfv 6573   Isom wiso 6574  (class class class)co 7448  supcsup 9509  cr 11183  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  erdsze2lem2  35172
  Copyright terms: Public domain W3C validator