Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze Structured version   Visualization version   GIF version

Theorem erdsze 35207
Description: The Erdős-Szekeres theorem. For any injective sequence 𝐹 on the reals of length at least (𝑅 − 1) · (𝑆 − 1) + 1, there is either a subsequence of length at least 𝑅 on which 𝐹 is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least 𝑆 on which 𝐹 is decreasing (i.e. a < , < order isomorphism, recalling that < is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdsze.r (𝜑𝑅 ∈ ℕ)
erdsze.s (𝜑𝑆 ∈ ℕ)
erdsze.l (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdsze (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐹,𝑠   𝑅,𝑠   𝑁,𝑠   𝜑,𝑠   𝑆,𝑠

Proof of Theorem erdsze
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . 2 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . 2 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 reseq2 5992 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
4 isoeq1 7337 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
53, 4syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
6 isoeq4 7340 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
7 imaeq2 6074 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8 isoeq5 7341 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
97, 8syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
105, 6, 93bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
11 elequ2 2123 . . . . . . . 8 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
1210, 11anbi12d 632 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
1312cbvrabv 3447 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
14 oveq2 7439 . . . . . . . 8 (𝑧 = 𝑥 → (1...𝑧) = (1...𝑥))
1514pweqd 4617 . . . . . . 7 (𝑧 = 𝑥 → 𝒫 (1...𝑧) = 𝒫 (1...𝑥))
16 elequ1 2115 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
1716anbi2d 630 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
1815, 17rabeqbidv 3455 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
1913, 18eqtrid 2789 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
2019imaeq2d 6078 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
2120supeq1d 9486 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
2221cbvmptv 5255 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
23 isoeq1 7337 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
243, 23syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
25 isoeq4 7340 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
26 isoeq5 7341 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
277, 26syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2824, 25, 273bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2928, 11anbi12d 632 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
3029cbvrabv 3447 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
3116anbi2d 630 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
3215, 31rabeqbidv 3455 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3330, 32eqtrid 2789 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3433imaeq2d 6078 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
3534supeq1d 9486 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
3635cbvmptv 5255 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
37 eqid 2737 . 2 (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩) = (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩)
38 erdsze.r . 2 (𝜑𝑅 ∈ ℕ)
39 erdsze.s . 2 (𝜑𝑆 ∈ ℕ)
40 erdsze.l . 2 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
411, 2, 22, 36, 37, 38, 39, 40erdszelem11 35206 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  𝒫 cpw 4600  cop 4632   class class class wbr 5143  cmpt 5225  ccnv 5684  cres 5687  cima 5688  1-1wf1 6558  cfv 6561   Isom wiso 6562  (class class class)co 7431  supcsup 9480  cr 11154  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  ...cfz 13547  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  erdsze2lem2  35209
  Copyright terms: Public domain W3C validator