Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze Structured version   Visualization version   GIF version

Theorem erdsze 35196
Description: The Erdős-Szekeres theorem. For any injective sequence 𝐹 on the reals of length at least (𝑅 − 1) · (𝑆 − 1) + 1, there is either a subsequence of length at least 𝑅 on which 𝐹 is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least 𝑆 on which 𝐹 is decreasing (i.e. a < , < order isomorphism, recalling that < is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdsze.r (𝜑𝑅 ∈ ℕ)
erdsze.s (𝜑𝑆 ∈ ℕ)
erdsze.l (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdsze (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐹,𝑠   𝑅,𝑠   𝑁,𝑠   𝜑,𝑠   𝑆,𝑠

Proof of Theorem erdsze
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . 2 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . 2 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 reseq2 5948 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
4 isoeq1 7295 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
53, 4syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
6 isoeq4 7298 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
7 imaeq2 6030 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8 isoeq5 7299 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
97, 8syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
105, 6, 93bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
11 elequ2 2124 . . . . . . . 8 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
1210, 11anbi12d 632 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
1312cbvrabv 3419 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
14 oveq2 7398 . . . . . . . 8 (𝑧 = 𝑥 → (1...𝑧) = (1...𝑥))
1514pweqd 4583 . . . . . . 7 (𝑧 = 𝑥 → 𝒫 (1...𝑧) = 𝒫 (1...𝑥))
16 elequ1 2116 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
1716anbi2d 630 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
1815, 17rabeqbidv 3427 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
1913, 18eqtrid 2777 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
2019imaeq2d 6034 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
2120supeq1d 9404 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
2221cbvmptv 5214 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
23 isoeq1 7295 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
243, 23syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
25 isoeq4 7298 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
26 isoeq5 7299 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
277, 26syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2824, 25, 273bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2928, 11anbi12d 632 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
3029cbvrabv 3419 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
3116anbi2d 630 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
3215, 31rabeqbidv 3427 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3330, 32eqtrid 2777 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3433imaeq2d 6034 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
3534supeq1d 9404 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
3635cbvmptv 5214 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
37 eqid 2730 . 2 (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩) = (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩)
38 erdsze.r . 2 (𝜑𝑅 ∈ ℕ)
39 erdsze.s . 2 (𝜑𝑆 ∈ ℕ)
40 erdsze.l . 2 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
411, 2, 22, 36, 37, 38, 39, 40erdszelem11 35195 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  𝒫 cpw 4566  cop 4598   class class class wbr 5110  cmpt 5191  ccnv 5640  cres 5643  cima 5644  1-1wf1 6511  cfv 6514   Isom wiso 6515  (class class class)co 7390  supcsup 9398  cr 11074  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cmin 11412  cn 12193  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  erdsze2lem2  35198
  Copyright terms: Public domain W3C validator