| Step | Hyp | Ref
| Expression |
| 1 | | erdsze.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | | erdsze.f |
. 2
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
| 3 | | reseq2 5992 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝐹 ↾ 𝑤) = (𝐹 ↾ 𝑦)) |
| 4 | | isoeq1 7337 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝑤) = (𝐹 ↾ 𝑦) → ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , < (𝑤, (𝐹 “ 𝑤)))) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , < (𝑤, (𝐹 “ 𝑤)))) |
| 6 | | isoeq4 7340 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑦) Isom < , < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑤)))) |
| 7 | | imaeq2 6074 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝐹 “ 𝑤) = (𝐹 “ 𝑦)) |
| 8 | | isoeq5 7341 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑤) = (𝐹 “ 𝑦) → ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)))) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)))) |
| 10 | 5, 6, 9 | 3bitrd 305 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)))) |
| 11 | | elequ2 2123 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) |
| 12 | 10, 11 | anbi12d 632 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤) ↔ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦))) |
| 13 | 12 | cbvrabv 3447 |
. . . . . 6
⊢ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} |
| 14 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (1...𝑧) = (1...𝑥)) |
| 15 | 14 | pweqd 4617 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → 𝒫 (1...𝑧) = 𝒫 (1...𝑥)) |
| 16 | | elequ1 2115 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
| 17 | 16 | anbi2d 630 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦) ↔ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦))) |
| 18 | 15, 17 | rabeqbidv 3455 |
. . . . . 6
⊢ (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}) |
| 19 | 13, 18 | eqtrid 2789 |
. . . . 5
⊢ (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}) |
| 20 | 19 | imaeq2d 6078 |
. . . 4
⊢ (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)})) |
| 21 | 20 | supeq1d 9486 |
. . 3
⊢ (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < ) = sup((♯ “
{𝑦 ∈ 𝒫
(1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| 22 | 21 | cbvmptv 5255 |
. 2
⊢ (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| 23 | | isoeq1 7337 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝑤) = (𝐹 ↾ 𝑦) → ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)))) |
| 24 | 3, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)))) |
| 25 | | isoeq4 7340 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑤)))) |
| 26 | | isoeq5 7341 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑤) = (𝐹 “ 𝑦) → ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)))) |
| 27 | 7, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)))) |
| 28 | 24, 25, 27 | 3bitrd 305 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ↔ (𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)))) |
| 29 | 28, 11 | anbi12d 632 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤) ↔ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦))) |
| 30 | 29 | cbvrabv 3447 |
. . . . . 6
⊢ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} |
| 31 | 16 | anbi2d 630 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦) ↔ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦))) |
| 32 | 15, 31 | rabeqbidv 3455 |
. . . . . 6
⊢ (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}) |
| 33 | 30, 32 | eqtrid 2789 |
. . . . 5
⊢ (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}) |
| 34 | 33 | imaeq2d 6078 |
. . . 4
⊢ (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)})) |
| 35 | 34 | supeq1d 9486 |
. . 3
⊢ (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < ) = sup((♯ “
{𝑦 ∈ 𝒫
(1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| 36 | 35 | cbvmptv 5255 |
. 2
⊢ (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| 37 | | eqid 2737 |
. 2
⊢ (𝑛 ∈ (1...𝑁) ↦ 〈((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < ))‘𝑛)〉) = (𝑛 ∈ (1...𝑁) ↦ 〈((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑤) Isom < , ◡ < (𝑤, (𝐹 “ 𝑤)) ∧ 𝑧 ∈ 𝑤)}), ℝ, < ))‘𝑛)〉) |
| 38 | | erdsze.r |
. 2
⊢ (𝜑 → 𝑅 ∈ ℕ) |
| 39 | | erdsze.s |
. 2
⊢ (𝜑 → 𝑆 ∈ ℕ) |
| 40 | | erdsze.l |
. 2
⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) |
| 41 | 1, 2, 22, 36, 37, 38, 39, 40 | erdszelem11 35206 |
1
⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |