Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze Structured version   Visualization version   GIF version

Theorem erdsze 35318
Description: The Erdős-Szekeres theorem. For any injective sequence 𝐹 on the reals of length at least (𝑅 − 1) · (𝑆 − 1) + 1, there is either a subsequence of length at least 𝑅 on which 𝐹 is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least 𝑆 on which 𝐹 is decreasing (i.e. a < , < order isomorphism, recalling that < is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdsze.r (𝜑𝑅 ∈ ℕ)
erdsze.s (𝜑𝑆 ∈ ℕ)
erdsze.l (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdsze (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐹,𝑠   𝑅,𝑠   𝑁,𝑠   𝜑,𝑠   𝑆,𝑠

Proof of Theorem erdsze
Dummy variables 𝑤 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . 2 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . 2 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 reseq2 5930 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
4 isoeq1 7260 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
53, 4syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
6 isoeq4 7263 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
7 imaeq2 6012 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8 isoeq5 7264 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
97, 8syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
105, 6, 93bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
11 elequ2 2128 . . . . . . . 8 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
1210, 11anbi12d 632 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
1312cbvrabv 3406 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
14 oveq2 7363 . . . . . . . 8 (𝑧 = 𝑥 → (1...𝑧) = (1...𝑥))
1514pweqd 4568 . . . . . . 7 (𝑧 = 𝑥 → 𝒫 (1...𝑧) = 𝒫 (1...𝑥))
16 elequ1 2120 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
1716anbi2d 630 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
1815, 17rabeqbidv 3414 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
1913, 18eqtrid 2780 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
2019imaeq2d 6016 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
2120supeq1d 9341 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
2221cbvmptv 5199 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
23 isoeq1 7260 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
243, 23syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤))))
25 isoeq4 7263 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤))))
26 isoeq5 7264 . . . . . . . . . 10 ((𝐹𝑤) = (𝐹𝑦) → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
277, 26syl 17 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2824, 25, 273bitrd 305 . . . . . . . 8 (𝑤 = 𝑦 → ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ↔ (𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦))))
2928, 11anbi12d 632 . . . . . . 7 (𝑤 = 𝑦 → (((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)))
3029cbvrabv 3406 . . . . . 6 {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)}
3116anbi2d 630 . . . . . . 7 (𝑧 = 𝑥 → (((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦) ↔ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)))
3215, 31rabeqbidv 3414 . . . . . 6 (𝑧 = 𝑥 → {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑧𝑦)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3330, 32eqtrid 2780 . . . . 5 (𝑧 = 𝑥 → {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)} = {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)})
3433imaeq2d 6016 . . . 4 (𝑧 = 𝑥 → (♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}) = (♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}))
3534supeq1d 9341 . . 3 (𝑧 = 𝑥 → sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
3635cbvmptv 5199 . 2 (𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < )) = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
37 eqid 2733 . 2 (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩) = (𝑛 ∈ (1...𝑁) ↦ ⟨((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛), ((𝑧 ∈ (1...𝑁) ↦ sup((♯ “ {𝑤 ∈ 𝒫 (1...𝑧) ∣ ((𝐹𝑤) Isom < , < (𝑤, (𝐹𝑤)) ∧ 𝑧𝑤)}), ℝ, < ))‘𝑛)⟩)
38 erdsze.r . 2 (𝜑𝑅 ∈ ℕ)
39 erdsze.s . 2 (𝜑𝑆 ∈ ℕ)
40 erdsze.l . 2 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
411, 2, 22, 36, 37, 38, 39, 40erdszelem11 35317 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  𝒫 cpw 4551  cop 4583   class class class wbr 5095  cmpt 5176  ccnv 5620  cres 5623  cima 5624  1-1wf1 6486  cfv 6489   Isom wiso 6490  (class class class)co 7355  supcsup 9335  cr 11016  1c1 11018   · cmul 11022   < clt 11157  cle 11158  cmin 11355  cn 12136  ...cfz 13414  chash 14244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-hash 14245
This theorem is referenced by:  erdsze2lem2  35320
  Copyright terms: Public domain W3C validator