Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem1 Structured version   Visualization version   GIF version

Theorem erdsze2lem1 35247
Description: Lemma for erdsze2 35249. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2lem.n 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
erdsze2lem.l (𝜑𝑁 < (♯‘𝐴))
Assertion
Ref Expression
erdsze2lem1 (𝜑 → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑅,𝑓   𝑆,𝑓   𝑓,𝑁   𝜑,𝑓

Proof of Theorem erdsze2lem1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . . . . . 9 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
2 erdsze2.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
3 nnm1nn0 12422 . . . . . . . . . . 11 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . . . . . 10 (𝜑 → (𝑅 − 1) ∈ ℕ0)
5 erdsze2.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ)
6 nnm1nn0 12422 . . . . . . . . . . 11 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
75, 6syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 − 1) ∈ ℕ0)
84, 7nn0mulcld 12447 . . . . . . . . 9 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈ ℕ0)
91, 8eqeltrid 2835 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
10 peano2nn0 12421 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
11 hashfz1 14253 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
129, 10, 113syl 18 . . . . . . 7 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
1312adantr 480 . . . . . 6 ((𝜑𝐴 ∈ Fin) → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
14 erdsze2lem.l . . . . . . . 8 (𝜑𝑁 < (♯‘𝐴))
1514adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ Fin) → 𝑁 < (♯‘𝐴))
16 hashcl 14263 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
17 nn0ltp1le 12531 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) ≤ (♯‘𝐴)))
189, 16, 17syl2an 596 . . . . . . 7 ((𝜑𝐴 ∈ Fin) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) ≤ (♯‘𝐴)))
1915, 18mpbid 232 . . . . . 6 ((𝜑𝐴 ∈ Fin) → (𝑁 + 1) ≤ (♯‘𝐴))
2013, 19eqbrtrd 5111 . . . . 5 ((𝜑𝐴 ∈ Fin) → (♯‘(1...(𝑁 + 1))) ≤ (♯‘𝐴))
21 fzfid 13880 . . . . . 6 ((𝜑𝐴 ∈ Fin) → (1...(𝑁 + 1)) ∈ Fin)
22 simpr 484 . . . . . 6 ((𝜑𝐴 ∈ Fin) → 𝐴 ∈ Fin)
23 hashdom 14286 . . . . . 6 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(1...(𝑁 + 1))) ≤ (♯‘𝐴) ↔ (1...(𝑁 + 1)) ≼ 𝐴))
2421, 22, 23syl2anc 584 . . . . 5 ((𝜑𝐴 ∈ Fin) → ((♯‘(1...(𝑁 + 1))) ≤ (♯‘𝐴) ↔ (1...(𝑁 + 1)) ≼ 𝐴))
2520, 24mpbid 232 . . . 4 ((𝜑𝐴 ∈ Fin) → (1...(𝑁 + 1)) ≼ 𝐴)
26 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
27 fzfid 13880 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → (1...(𝑁 + 1)) ∈ Fin)
28 isinffi 9885 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) → ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴)
2926, 27, 28syl2anc 584 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴)
30 erdsze2.a . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
31 reex 11097 . . . . . . . 8 ℝ ∈ V
32 ssexg 5259 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ℝ ∈ V) → 𝐴 ∈ V)
3330, 31, 32sylancl 586 . . . . . . 7 (𝜑𝐴 ∈ V)
3433adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ V)
35 brdomg 8881 . . . . . 6 (𝐴 ∈ V → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴))
3634, 35syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴))
3729, 36mpbird 257 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → (1...(𝑁 + 1)) ≼ 𝐴)
3825, 37pm2.61dan 812 . . 3 (𝜑 → (1...(𝑁 + 1)) ≼ 𝐴)
39 domeng 8885 . . . 4 (𝐴 ∈ V → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑠((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)))
4033, 39syl 17 . . 3 (𝜑 → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑠((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)))
4138, 40mpbid 232 . 2 (𝜑 → ∃𝑠((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴))
42 simprr 772 . . . . . 6 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝑠𝐴)
4330adantr 480 . . . . . 6 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝐴 ⊆ ℝ)
4442, 43sstrd 3940 . . . . 5 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝑠 ⊆ ℝ)
45 ltso 11193 . . . . 5 < Or ℝ
46 soss 5542 . . . . 5 (𝑠 ⊆ ℝ → ( < Or ℝ → < Or 𝑠))
4744, 45, 46mpisyl 21 . . . 4 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → < Or 𝑠)
48 fzfid 13880 . . . . 5 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (1...(𝑁 + 1)) ∈ Fin)
49 simprl 770 . . . . . 6 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (1...(𝑁 + 1)) ≈ 𝑠)
50 enfi 9096 . . . . . 6 ((1...(𝑁 + 1)) ≈ 𝑠 → ((1...(𝑁 + 1)) ∈ Fin ↔ 𝑠 ∈ Fin))
5149, 50syl 17 . . . . 5 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ((1...(𝑁 + 1)) ∈ Fin ↔ 𝑠 ∈ Fin))
5248, 51mpbid 232 . . . 4 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝑠 ∈ Fin)
53 fz1iso 14369 . . . 4 (( < Or 𝑠𝑠 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠))
5447, 52, 53syl2anc 584 . . 3 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠))
55 isof1o 7257 . . . . . . . . . 10 (𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠) → 𝑓:(1...(♯‘𝑠))–1-1-onto𝑠)
5655adantl 481 . . . . . . . . 9 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(♯‘𝑠))–1-1-onto𝑠)
57 hashen 14254 . . . . . . . . . . . . . . 15 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝑠 ∈ Fin) → ((♯‘(1...(𝑁 + 1))) = (♯‘𝑠) ↔ (1...(𝑁 + 1)) ≈ 𝑠))
5848, 52, 57syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ((♯‘(1...(𝑁 + 1))) = (♯‘𝑠) ↔ (1...(𝑁 + 1)) ≈ 𝑠))
5949, 58mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (♯‘(1...(𝑁 + 1))) = (♯‘𝑠))
6012adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
6159, 60eqtr3d 2768 . . . . . . . . . . . 12 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (♯‘𝑠) = (𝑁 + 1))
6261adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (♯‘𝑠) = (𝑁 + 1))
6362oveq2d 7362 . . . . . . . . . 10 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (1...(♯‘𝑠)) = (1...(𝑁 + 1)))
6463f1oeq2d 6759 . . . . . . . . 9 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓:(1...(♯‘𝑠))–1-1-onto𝑠𝑓:(1...(𝑁 + 1))–1-1-onto𝑠))
6556, 64mpbid 232 . . . . . . . 8 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(𝑁 + 1))–1-1-onto𝑠)
66 f1of1 6762 . . . . . . . 8 (𝑓:(1...(𝑁 + 1))–1-1-onto𝑠𝑓:(1...(𝑁 + 1))–1-1𝑠)
6765, 66syl 17 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(𝑁 + 1))–1-1𝑠)
68 simplrr 777 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑠𝐴)
69 f1ss 6724 . . . . . . 7 ((𝑓:(1...(𝑁 + 1))–1-1𝑠𝑠𝐴) → 𝑓:(1...(𝑁 + 1))–1-1𝐴)
7067, 68, 69syl2anc 584 . . . . . 6 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(𝑁 + 1))–1-1𝐴)
71 simpr 484 . . . . . . . 8 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠))
72 f1ofo 6770 . . . . . . . . 9 (𝑓:(1...(♯‘𝑠))–1-1-onto𝑠𝑓:(1...(♯‘𝑠))–onto𝑠)
73 forn 6738 . . . . . . . . 9 (𝑓:(1...(♯‘𝑠))–onto𝑠 → ran 𝑓 = 𝑠)
74 isoeq5 7255 . . . . . . . . 9 (ran 𝑓 = 𝑠 → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)))
7556, 72, 73, 744syl 19 . . . . . . . 8 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)))
7671, 75mpbird 257 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓))
77 isoeq4 7254 . . . . . . . 8 ((1...(♯‘𝑠)) = (1...(𝑁 + 1)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
7863, 77syl 17 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
7976, 78mpbid 232 . . . . . 6 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))
8070, 79jca 511 . . . . 5 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
8180ex 412 . . . 4 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠) → (𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))))
8281eximdv 1918 . . 3 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠) → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))))
8354, 82mpd 15 . 2 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
8441, 83exlimddv 1936 1 (𝜑 → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5089   Or wor 5521  ran crn 5615  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  (class class class)co 7346  cen 8866  cdom 8867  Fincfn 8869  cr 11005  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  cn 12125  0cn0 12381  ...cfz 13407  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  erdsze2  35249
  Copyright terms: Public domain W3C validator