Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem2 Structured version   Visualization version   GIF version

Theorem erdsze2lem2 31518
Description: Lemma for erdsze2 31519. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2lem.n 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
erdsze2lem.l (𝜑𝑁 < (♯‘𝐴))
erdsze2lem.g (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
erdsze2lem.i (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
Assertion
Ref Expression
erdsze2lem2 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐺,𝑠   𝑅,𝑠   𝑆,𝑠   𝑁,𝑠   𝜑,𝑠

Proof of Theorem erdsze2lem2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . 5 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
2 erdsze2.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 nnm1nn0 11607 . . . . . . 7 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑅 − 1) ∈ ℕ0)
5 erdsze2.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
6 nnm1nn0 11607 . . . . . . 7 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
75, 6syl 17 . . . . . 6 (𝜑 → (𝑆 − 1) ∈ ℕ0)
84, 7nn0mulcld 11629 . . . . 5 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈ ℕ0)
91, 8syl5eqel 2900 . . . 4 (𝜑𝑁 ∈ ℕ0)
10 nn0p1nn 11605 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
119, 10syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
12 erdsze2.f . . . 4 (𝜑𝐹:𝐴1-1→ℝ)
13 erdsze2lem.g . . . 4 (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
14 f1co 6333 . . . 4 ((𝐹:𝐴1-1→ℝ ∧ 𝐺:(1...(𝑁 + 1))–1-1𝐴) → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
1512, 13, 14syl2anc 575 . . 3 (𝜑 → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
169nn0red 11625 . . . . 5 (𝜑𝑁 ∈ ℝ)
1716ltp1d 11246 . . . 4 (𝜑𝑁 < (𝑁 + 1))
181, 17syl5eqbrr 4891 . . 3 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (𝑁 + 1))
1911, 15, 2, 5, 18erdsze 31516 . 2 (𝜑 → ∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))))
20 selpw 4369 . . . 4 (𝑡 ∈ 𝒫 (1...(𝑁 + 1)) ↔ 𝑡 ⊆ (1...(𝑁 + 1)))
21 imassrn 5698 . . . . . . . 8 (𝐺𝑡) ⊆ ran 𝐺
22 f1f 6323 . . . . . . . . . 10 (𝐺:(1...(𝑁 + 1))–1-1𝐴𝐺:(1...(𝑁 + 1))⟶𝐴)
2313, 22syl 17 . . . . . . . . 9 (𝜑𝐺:(1...(𝑁 + 1))⟶𝐴)
2423frnd 6270 . . . . . . . 8 (𝜑 → ran 𝐺𝐴)
2521, 24syl5ss 3820 . . . . . . 7 (𝜑 → (𝐺𝑡) ⊆ 𝐴)
26 erdsze2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
27 reex 10319 . . . . . . . . 9 ℝ ∈ V
28 ssexg 5010 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ℝ ∈ V) → 𝐴 ∈ V)
2926, 27, 28sylancl 576 . . . . . . . 8 (𝜑𝐴 ∈ V)
30 elpw2g 5030 . . . . . . . 8 (𝐴 ∈ V → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3129, 30syl 17 . . . . . . 7 (𝜑 → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3225, 31mpbird 248 . . . . . 6 (𝜑 → (𝐺𝑡) ∈ 𝒫 𝐴)
3332adantr 468 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ 𝒫 𝐴)
34 vex 3405 . . . . . . . . . . . 12 𝑡 ∈ V
3534f1imaen 8261 . . . . . . . . . . 11 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
3613, 35sylan 571 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
37 fzfid 13003 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ∈ Fin)
38 simpr 473 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ⊆ (1...(𝑁 + 1)))
39 ssfi 8426 . . . . . . . . . . . . 13 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
4037, 38, 39syl2anc 575 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
41 enfii 8423 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ (𝐺𝑡) ≈ 𝑡) → (𝐺𝑡) ∈ Fin)
4240, 36, 41syl2anc 575 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ Fin)
43 hashen 13362 . . . . . . . . . . 11 (((𝐺𝑡) ∈ Fin ∧ 𝑡 ∈ Fin) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4442, 40, 43syl2anc 575 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4536, 44mpbird 248 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (♯‘(𝐺𝑡)) = (♯‘𝑡))
4645breq2d 4867 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ↔ 𝑅 ≤ (♯‘𝑡)))
4746biimprd 239 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘𝑡) → 𝑅 ≤ (♯‘(𝐺𝑡))))
48 erdsze2lem.i . . . . . . . . . . . . . . 15 (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
4948ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
5038adantr 468 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑡 ⊆ (1...(𝑁 + 1)))
51 simprl 778 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥𝑡)
5250, 51sseldd 3810 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥 ∈ (1...(𝑁 + 1)))
53 simprr 780 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦𝑡)
5450, 53sseldd 3810 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦 ∈ (1...(𝑁 + 1)))
55 isorel 6807 . . . . . . . . . . . . . 14 ((𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺) ∧ (𝑥 ∈ (1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1)))) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5649, 52, 54, 55syl12anc 856 . . . . . . . . . . . . 13 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5756biimpd 220 . . . . . . . . . . . 12 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
5857ralrimivva 3170 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
59 elfznn 12600 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℕ)
6059nnred 11327 . . . . . . . . . . . . . . 15 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℝ)
6160ssriv 3813 . . . . . . . . . . . . . 14 (1...(𝑁 + 1)) ⊆ ℝ
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ⊆ ℝ)
63 ltso 10410 . . . . . . . . . . . . 13 < Or ℝ
64 soss 5261 . . . . . . . . . . . . 13 ((1...(𝑁 + 1)) ⊆ ℝ → ( < Or ℝ → < Or (1...(𝑁 + 1))))
6562, 63, 64mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or (1...(𝑁 + 1)))
6626adantr 468 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐴 ⊆ ℝ)
67 soss 5261 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
6866, 63, 67mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or 𝐴)
6923adantr 468 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
70 soisores 6808 . . . . . . . . . . . 12 ((( < Or (1...(𝑁 + 1)) ∧ < Or 𝐴) ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴𝑡 ⊆ (1...(𝑁 + 1)))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7165, 68, 69, 38, 70syl22anc 858 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7258, 71mpbird 248 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)))
73 isocnv 6811 . . . . . . . . . 10 ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
7472, 73syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
75 isotr 6817 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
7675ex 399 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
7774, 76syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
78 resco 5864 . . . . . . . . . . . . 13 ((𝐹𝐺) ↾ 𝑡) = (𝐹 ∘ (𝐺𝑡))
7978coeq1i 5494 . . . . . . . . . . . 12 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡))
80 coass 5879 . . . . . . . . . . . 12 ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
8179, 80eqtri 2839 . . . . . . . . . . 11 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
82 f1ores 6374 . . . . . . . . . . . . . . 15 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
8313, 82sylan 571 . . . . . . . . . . . . . 14 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
84 f1ococnv2 6386 . . . . . . . . . . . . . 14 ((𝐺𝑡):𝑡1-1-onto→(𝐺𝑡) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8583, 84syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8685coeq2d 5497 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ∘ ( I ↾ (𝐺𝑡))))
87 coires1 5878 . . . . . . . . . . . 12 (𝐹 ∘ ( I ↾ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡))
8886, 87syl6eq 2867 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡)))
8981, 88syl5eq 2863 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)))
90 isoeq1 6798 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
9189, 90syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
92 imaco 5865 . . . . . . . . . 10 ((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡))
93 isoeq5 6802 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9492, 93ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
9591, 94syl6bb 278 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9677, 95sylibd 230 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9747, 96anim12d 598 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
9845breq2d 4867 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ↔ 𝑆 ≤ (♯‘𝑡)))
9998biimprd 239 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘𝑡) → 𝑆 ≤ (♯‘(𝐺𝑡))))
100 isotr 6817 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
101100ex 399 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10274, 101syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
103 isoeq1 6798 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10489, 103syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
105 isoeq5 6802 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10692, 105ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
107104, 106syl6bb 278 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
108102, 107sylibd 230 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10999, 108anim12d 598 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
11097, 109orim12d 978 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
111 fveq2 6415 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → (♯‘𝑠) = (♯‘(𝐺𝑡)))
112111breq2d 4867 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑅 ≤ (♯‘𝑠) ↔ 𝑅 ≤ (♯‘(𝐺𝑡))))
113 reseq2 5603 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)))
114 isoeq1 6798 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
115113, 114syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
116 isoeq4 6801 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
117 imaeq2 5683 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 “ (𝐺𝑡)))
118 isoeq5 6802 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
119117, 118syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
120115, 116, 1193bitrd 296 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
121112, 120anbi12d 618 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
122111breq2d 4867 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑆 ≤ (♯‘𝑠) ↔ 𝑆 ≤ (♯‘(𝐺𝑡))))
123 isoeq1 6798 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
124113, 123syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
125 isoeq4 6801 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
126 isoeq5 6802 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
127117, 126syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
128124, 125, 1273bitrd 296 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
129122, 128anbi12d 618 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
130121, 129orbi12d 933 . . . . . 6 (𝑠 = (𝐺𝑡) → (((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
131130rspcev 3513 . . . . 5 (((𝐺𝑡) ∈ 𝒫 𝐴 ∧ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
13233, 110, 131syl6an 666 . . . 4 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13320, 132sylan2b 583 . . 3 ((𝜑𝑡 ∈ 𝒫 (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
134133rexlimdva 3230 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13519, 134mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wcel 2157  wral 3107  wrex 3108  Vcvv 3402  wss 3780  𝒫 cpw 4362   class class class wbr 4855   I cid 5229   Or wor 5242  ccnv 5321  ran crn 5323  cres 5324  cima 5325  ccom 5326  wf 6104  1-1wf1 6105  1-1-ontowf1o 6107  cfv 6108   Isom wiso 6109  (class class class)co 6881  cen 8196  Fincfn 8199  cr 10227  1c1 10229   + caddc 10231   · cmul 10233   < clt 10366  cle 10367  cmin 10558  cn 11312  0cn0 11566  ...cfz 12556  chash 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305  ax-pre-sup 10306
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-isom 6117  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-om 7303  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-2o 7804  df-oadd 7807  df-er 7986  df-map 8101  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-sup 8594  df-card 9055  df-cda 9282  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-nn 11313  df-n0 11567  df-xnn0 11637  df-z 11651  df-uz 11912  df-fz 12557  df-hash 13345
This theorem is referenced by:  erdsze2  31519
  Copyright terms: Public domain W3C validator