Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem2 Structured version   Visualization version   GIF version

Theorem erdsze2lem2 35164
Description: Lemma for erdsze2 35165. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2lem.n 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
erdsze2lem.l (𝜑𝑁 < (♯‘𝐴))
erdsze2lem.g (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
erdsze2lem.i (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
Assertion
Ref Expression
erdsze2lem2 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐺,𝑠   𝑅,𝑠   𝑆,𝑠   𝑁,𝑠   𝜑,𝑠

Proof of Theorem erdsze2lem2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . 5 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
2 erdsze2.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 nnm1nn0 12459 . . . . . . 7 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑅 − 1) ∈ ℕ0)
5 erdsze2.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
6 nnm1nn0 12459 . . . . . . 7 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
75, 6syl 17 . . . . . 6 (𝜑 → (𝑆 − 1) ∈ ℕ0)
84, 7nn0mulcld 12484 . . . . 5 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈ ℕ0)
91, 8eqeltrid 2832 . . . 4 (𝜑𝑁 ∈ ℕ0)
10 nn0p1nn 12457 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
119, 10syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
12 erdsze2.f . . . 4 (𝜑𝐹:𝐴1-1→ℝ)
13 erdsze2lem.g . . . 4 (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
14 f1co 6749 . . . 4 ((𝐹:𝐴1-1→ℝ ∧ 𝐺:(1...(𝑁 + 1))–1-1𝐴) → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
1512, 13, 14syl2anc 584 . . 3 (𝜑 → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
169nn0red 12480 . . . . 5 (𝜑𝑁 ∈ ℝ)
1716ltp1d 12089 . . . 4 (𝜑𝑁 < (𝑁 + 1))
181, 17eqbrtrrid 5138 . . 3 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (𝑁 + 1))
1911, 15, 2, 5, 18erdsze 35162 . 2 (𝜑 → ∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))))
20 velpw 4564 . . . 4 (𝑡 ∈ 𝒫 (1...(𝑁 + 1)) ↔ 𝑡 ⊆ (1...(𝑁 + 1)))
21 imassrn 6031 . . . . . . . 8 (𝐺𝑡) ⊆ ran 𝐺
22 f1f 6738 . . . . . . . . . 10 (𝐺:(1...(𝑁 + 1))–1-1𝐴𝐺:(1...(𝑁 + 1))⟶𝐴)
2313, 22syl 17 . . . . . . . . 9 (𝜑𝐺:(1...(𝑁 + 1))⟶𝐴)
2423frnd 6678 . . . . . . . 8 (𝜑 → ran 𝐺𝐴)
2521, 24sstrid 3955 . . . . . . 7 (𝜑 → (𝐺𝑡) ⊆ 𝐴)
26 erdsze2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
27 reex 11135 . . . . . . . . 9 ℝ ∈ V
28 ssexg 5273 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ℝ ∈ V) → 𝐴 ∈ V)
2926, 27, 28sylancl 586 . . . . . . . 8 (𝜑𝐴 ∈ V)
30 elpw2g 5283 . . . . . . . 8 (𝐴 ∈ V → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3129, 30syl 17 . . . . . . 7 (𝜑 → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3225, 31mpbird 257 . . . . . 6 (𝜑 → (𝐺𝑡) ∈ 𝒫 𝐴)
3332adantr 480 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ 𝒫 𝐴)
34 vex 3448 . . . . . . . . . . . 12 𝑡 ∈ V
3534f1imaen 8965 . . . . . . . . . . 11 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
3613, 35sylan 580 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
37 fzfid 13914 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ∈ Fin)
38 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ⊆ (1...(𝑁 + 1)))
39 ssfi 9114 . . . . . . . . . . . . 13 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
4037, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
41 enfii 9127 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ (𝐺𝑡) ≈ 𝑡) → (𝐺𝑡) ∈ Fin)
4240, 36, 41syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ Fin)
43 hashen 14288 . . . . . . . . . . 11 (((𝐺𝑡) ∈ Fin ∧ 𝑡 ∈ Fin) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4442, 40, 43syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4536, 44mpbird 257 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (♯‘(𝐺𝑡)) = (♯‘𝑡))
4645breq2d 5114 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ↔ 𝑅 ≤ (♯‘𝑡)))
4746biimprd 248 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘𝑡) → 𝑅 ≤ (♯‘(𝐺𝑡))))
48 erdsze2lem.i . . . . . . . . . . . . . . 15 (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
4948ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
5038adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑡 ⊆ (1...(𝑁 + 1)))
51 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥𝑡)
5250, 51sseldd 3944 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥 ∈ (1...(𝑁 + 1)))
53 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦𝑡)
5450, 53sseldd 3944 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦 ∈ (1...(𝑁 + 1)))
55 isorel 7283 . . . . . . . . . . . . . 14 ((𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺) ∧ (𝑥 ∈ (1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1)))) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5649, 52, 54, 55syl12anc 836 . . . . . . . . . . . . 13 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5756biimpd 229 . . . . . . . . . . . 12 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
5857ralrimivva 3178 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
59 elfznn 13490 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℕ)
6059nnred 12177 . . . . . . . . . . . . . . 15 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℝ)
6160ssriv 3947 . . . . . . . . . . . . . 14 (1...(𝑁 + 1)) ⊆ ℝ
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ⊆ ℝ)
63 ltso 11230 . . . . . . . . . . . . 13 < Or ℝ
64 soss 5559 . . . . . . . . . . . . 13 ((1...(𝑁 + 1)) ⊆ ℝ → ( < Or ℝ → < Or (1...(𝑁 + 1))))
6562, 63, 64mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or (1...(𝑁 + 1)))
6626adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐴 ⊆ ℝ)
67 soss 5559 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
6866, 63, 67mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or 𝐴)
6923adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
70 soisores 7284 . . . . . . . . . . . 12 ((( < Or (1...(𝑁 + 1)) ∧ < Or 𝐴) ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴𝑡 ⊆ (1...(𝑁 + 1)))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7165, 68, 69, 38, 70syl22anc 838 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7258, 71mpbird 257 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)))
73 isocnv 7287 . . . . . . . . . 10 ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
7472, 73syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
75 isotr 7293 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
7675ex 412 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
7774, 76syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
78 resco 6211 . . . . . . . . . . . . 13 ((𝐹𝐺) ↾ 𝑡) = (𝐹 ∘ (𝐺𝑡))
7978coeq1i 5813 . . . . . . . . . . . 12 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡))
80 coass 6226 . . . . . . . . . . . 12 ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
8179, 80eqtri 2752 . . . . . . . . . . 11 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
82 f1ores 6796 . . . . . . . . . . . . . . 15 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
8313, 82sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
84 f1ococnv2 6809 . . . . . . . . . . . . . 14 ((𝐺𝑡):𝑡1-1-onto→(𝐺𝑡) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8583, 84syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8685coeq2d 5816 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ∘ ( I ↾ (𝐺𝑡))))
87 coires1 6225 . . . . . . . . . . . 12 (𝐹 ∘ ( I ↾ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡))
8886, 87eqtrdi 2780 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡)))
8981, 88eqtrid 2776 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)))
90 isoeq1 7274 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
9189, 90syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
92 imaco 6212 . . . . . . . . . 10 ((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡))
93 isoeq5 7278 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9492, 93ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
9591, 94bitrdi 287 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9677, 95sylibd 239 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9747, 96anim12d 609 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
9845breq2d 5114 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ↔ 𝑆 ≤ (♯‘𝑡)))
9998biimprd 248 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘𝑡) → 𝑆 ≤ (♯‘(𝐺𝑡))))
100 isotr 7293 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
101100ex 412 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10274, 101syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
103 isoeq1 7274 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10489, 103syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
105 isoeq5 7278 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10692, 105ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
107104, 106bitrdi 287 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
108102, 107sylibd 239 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10999, 108anim12d 609 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
11097, 109orim12d 966 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
111 fveq2 6840 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → (♯‘𝑠) = (♯‘(𝐺𝑡)))
112111breq2d 5114 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑅 ≤ (♯‘𝑠) ↔ 𝑅 ≤ (♯‘(𝐺𝑡))))
113 reseq2 5934 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)))
114 isoeq1 7274 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
115113, 114syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
116 isoeq4 7277 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
117 imaeq2 6016 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 “ (𝐺𝑡)))
118 isoeq5 7278 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
119117, 118syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
120115, 116, 1193bitrd 305 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
121112, 120anbi12d 632 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
122111breq2d 5114 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑆 ≤ (♯‘𝑠) ↔ 𝑆 ≤ (♯‘(𝐺𝑡))))
123 isoeq1 7274 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
124113, 123syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
125 isoeq4 7277 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
126 isoeq5 7278 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
127117, 126syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
128124, 125, 1273bitrd 305 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
129122, 128anbi12d 632 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
130121, 129orbi12d 918 . . . . . 6 (𝑠 = (𝐺𝑡) → (((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
131130rspcev 3585 . . . . 5 (((𝐺𝑡) ∈ 𝒫 𝐴 ∧ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
13233, 110, 131syl6an 684 . . . 4 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13320, 132sylan2b 594 . . 3 ((𝜑𝑡 ∈ 𝒫 (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
134133rexlimdva 3134 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13519, 134mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911  𝒫 cpw 4559   class class class wbr 5102   I cid 5525   Or wor 5538  ccnv 5630  ran crn 5632  cres 5633  cima 5634  ccom 5635  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499   Isom wiso 6500  (class class class)co 7369  cen 8892  Fincfn 8895  cr 11043  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  ...cfz 13444  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  erdsze2  35165
  Copyright terms: Public domain W3C validator