Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem2 Structured version   Visualization version   GIF version

Theorem erdsze2lem2 31524
Description: Lemma for erdsze2 31525. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2lem.n 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
erdsze2lem.l (𝜑𝑁 < (♯‘𝐴))
erdsze2lem.g (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
erdsze2lem.i (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
Assertion
Ref Expression
erdsze2lem2 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐺,𝑠   𝑅,𝑠   𝑆,𝑠   𝑁,𝑠   𝜑,𝑠

Proof of Theorem erdsze2lem2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . 5 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
2 erdsze2.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 nnm1nn0 11536 . . . . . . 7 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑅 − 1) ∈ ℕ0)
5 erdsze2.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
6 nnm1nn0 11536 . . . . . . 7 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
75, 6syl 17 . . . . . 6 (𝜑 → (𝑆 − 1) ∈ ℕ0)
84, 7nn0mulcld 11558 . . . . 5 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈ ℕ0)
91, 8syl5eqel 2854 . . . 4 (𝜑𝑁 ∈ ℕ0)
10 nn0p1nn 11534 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
119, 10syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
12 erdsze2.f . . . 4 (𝜑𝐹:𝐴1-1→ℝ)
13 erdsze2lem.g . . . 4 (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
14 f1co 6251 . . . 4 ((𝐹:𝐴1-1→ℝ ∧ 𝐺:(1...(𝑁 + 1))–1-1𝐴) → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
1512, 13, 14syl2anc 573 . . 3 (𝜑 → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
169nn0red 11554 . . . . 5 (𝜑𝑁 ∈ ℝ)
1716ltp1d 11156 . . . 4 (𝜑𝑁 < (𝑁 + 1))
181, 17syl5eqbrr 4822 . . 3 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (𝑁 + 1))
1911, 15, 2, 5, 18erdsze 31522 . 2 (𝜑 → ∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))))
20 selpw 4304 . . . 4 (𝑡 ∈ 𝒫 (1...(𝑁 + 1)) ↔ 𝑡 ⊆ (1...(𝑁 + 1)))
21 imassrn 5618 . . . . . . . 8 (𝐺𝑡) ⊆ ran 𝐺
22 f1f 6241 . . . . . . . . . 10 (𝐺:(1...(𝑁 + 1))–1-1𝐴𝐺:(1...(𝑁 + 1))⟶𝐴)
2313, 22syl 17 . . . . . . . . 9 (𝜑𝐺:(1...(𝑁 + 1))⟶𝐴)
24 frn 6193 . . . . . . . . 9 (𝐺:(1...(𝑁 + 1))⟶𝐴 → ran 𝐺𝐴)
2523, 24syl 17 . . . . . . . 8 (𝜑 → ran 𝐺𝐴)
2621, 25syl5ss 3763 . . . . . . 7 (𝜑 → (𝐺𝑡) ⊆ 𝐴)
27 erdsze2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
28 reex 10229 . . . . . . . . 9 ℝ ∈ V
29 ssexg 4938 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ℝ ∈ V) → 𝐴 ∈ V)
3027, 28, 29sylancl 574 . . . . . . . 8 (𝜑𝐴 ∈ V)
31 elpw2g 4958 . . . . . . . 8 (𝐴 ∈ V → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3230, 31syl 17 . . . . . . 7 (𝜑 → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3326, 32mpbird 247 . . . . . 6 (𝜑 → (𝐺𝑡) ∈ 𝒫 𝐴)
3433adantr 466 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ 𝒫 𝐴)
35 vex 3354 . . . . . . . . . . . 12 𝑡 ∈ V
3635f1imaen 8171 . . . . . . . . . . 11 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
3713, 36sylan 569 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
38 fzfid 12980 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ∈ Fin)
39 simpr 471 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ⊆ (1...(𝑁 + 1)))
40 ssfi 8336 . . . . . . . . . . . . 13 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
4138, 39, 40syl2anc 573 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
42 enfii 8333 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ (𝐺𝑡) ≈ 𝑡) → (𝐺𝑡) ∈ Fin)
4341, 37, 42syl2anc 573 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ Fin)
44 hashen 13339 . . . . . . . . . . 11 (((𝐺𝑡) ∈ Fin ∧ 𝑡 ∈ Fin) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4543, 41, 44syl2anc 573 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4637, 45mpbird 247 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (♯‘(𝐺𝑡)) = (♯‘𝑡))
4746breq2d 4798 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ↔ 𝑅 ≤ (♯‘𝑡)))
4847biimprd 238 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘𝑡) → 𝑅 ≤ (♯‘(𝐺𝑡))))
49 erdsze2lem.i . . . . . . . . . . . . . . 15 (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
5049ad2antrr 705 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
5139adantr 466 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑡 ⊆ (1...(𝑁 + 1)))
52 simprl 754 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥𝑡)
5351, 52sseldd 3753 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥 ∈ (1...(𝑁 + 1)))
54 simprr 756 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦𝑡)
5551, 54sseldd 3753 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦 ∈ (1...(𝑁 + 1)))
56 isorel 6719 . . . . . . . . . . . . . 14 ((𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺) ∧ (𝑥 ∈ (1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1)))) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5750, 53, 55, 56syl12anc 1474 . . . . . . . . . . . . 13 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5857biimpd 219 . . . . . . . . . . . 12 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
5958ralrimivva 3120 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
60 elfznn 12577 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℕ)
6160nnred 11237 . . . . . . . . . . . . . . 15 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℝ)
6261ssriv 3756 . . . . . . . . . . . . . 14 (1...(𝑁 + 1)) ⊆ ℝ
6362a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ⊆ ℝ)
64 ltso 10320 . . . . . . . . . . . . 13 < Or ℝ
65 soss 5188 . . . . . . . . . . . . 13 ((1...(𝑁 + 1)) ⊆ ℝ → ( < Or ℝ → < Or (1...(𝑁 + 1))))
6663, 64, 65mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or (1...(𝑁 + 1)))
6727adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐴 ⊆ ℝ)
68 soss 5188 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
6967, 64, 68mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or 𝐴)
7023adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
71 soisores 6720 . . . . . . . . . . . 12 ((( < Or (1...(𝑁 + 1)) ∧ < Or 𝐴) ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴𝑡 ⊆ (1...(𝑁 + 1)))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7266, 69, 70, 39, 71syl22anc 1477 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7359, 72mpbird 247 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)))
74 isocnv 6723 . . . . . . . . . 10 ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
7573, 74syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
76 isotr 6729 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
7776ex 397 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
7875, 77syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
79 resco 5783 . . . . . . . . . . . . 13 ((𝐹𝐺) ↾ 𝑡) = (𝐹 ∘ (𝐺𝑡))
8079coeq1i 5420 . . . . . . . . . . . 12 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡))
81 coass 5798 . . . . . . . . . . . 12 ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
8280, 81eqtri 2793 . . . . . . . . . . 11 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
83 f1ores 6292 . . . . . . . . . . . . . . 15 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
8413, 83sylan 569 . . . . . . . . . . . . . 14 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
85 f1ococnv2 6304 . . . . . . . . . . . . . 14 ((𝐺𝑡):𝑡1-1-onto→(𝐺𝑡) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8684, 85syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8786coeq2d 5423 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ∘ ( I ↾ (𝐺𝑡))))
88 coires1 5797 . . . . . . . . . . . 12 (𝐹 ∘ ( I ↾ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡))
8987, 88syl6eq 2821 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡)))
9082, 89syl5eq 2817 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)))
91 isoeq1 6710 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
9290, 91syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
93 imaco 5784 . . . . . . . . . 10 ((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡))
94 isoeq5 6714 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9593, 94ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
9692, 95syl6bb 276 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9778, 96sylibd 229 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9848, 97anim12d 596 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
9946breq2d 4798 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ↔ 𝑆 ≤ (♯‘𝑡)))
10099biimprd 238 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘𝑡) → 𝑆 ≤ (♯‘(𝐺𝑡))))
101 isotr 6729 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
102101ex 397 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10375, 102syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
104 isoeq1 6710 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10590, 104syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
106 isoeq5 6714 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10793, 106ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
108105, 107syl6bb 276 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
109103, 108sylibd 229 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
110100, 109anim12d 596 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
11198, 110orim12d 949 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
112 fveq2 6332 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → (♯‘𝑠) = (♯‘(𝐺𝑡)))
113112breq2d 4798 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑅 ≤ (♯‘𝑠) ↔ 𝑅 ≤ (♯‘(𝐺𝑡))))
114 reseq2 5529 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)))
115 isoeq1 6710 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
116114, 115syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
117 isoeq4 6713 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
118 imaeq2 5603 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 “ (𝐺𝑡)))
119 isoeq5 6714 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
120118, 119syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
121116, 117, 1203bitrd 294 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
122113, 121anbi12d 616 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
123112breq2d 4798 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑆 ≤ (♯‘𝑠) ↔ 𝑆 ≤ (♯‘(𝐺𝑡))))
124 isoeq1 6710 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
125114, 124syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
126 isoeq4 6713 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
127 isoeq5 6714 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
128118, 127syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
129125, 126, 1283bitrd 294 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
130123, 129anbi12d 616 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
131122, 130orbi12d 904 . . . . . 6 (𝑠 = (𝐺𝑡) → (((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
132131rspcev 3460 . . . . 5 (((𝐺𝑡) ∈ 𝒫 𝐴 ∧ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
13334, 111, 132syl6an 663 . . . 4 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13420, 133sylan2b 581 . . 3 ((𝜑𝑡 ∈ 𝒫 (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
135134rexlimdva 3179 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13619, 135mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  wss 3723  𝒫 cpw 4297   class class class wbr 4786   I cid 5156   Or wor 5169  ccnv 5248  ran crn 5250  cres 5251  cima 5252  ccom 5253  wf 6027  1-1wf1 6028  1-1-ontowf1o 6030  cfv 6031   Isom wiso 6032  (class class class)co 6793  cen 8106  Fincfn 8109  cr 10137  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468  cn 11222  0cn0 11494  ...cfz 12533  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-hash 13322
This theorem is referenced by:  erdsze2  31525
  Copyright terms: Public domain W3C validator