Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem2 Structured version   Visualization version   GIF version

Theorem erdsze2lem2 33166
Description: Lemma for erdsze2 33167. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2lem.n 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
erdsze2lem.l (𝜑𝑁 < (♯‘𝐴))
erdsze2lem.g (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
erdsze2lem.i (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
Assertion
Ref Expression
erdsze2lem2 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐺,𝑠   𝑅,𝑠   𝑆,𝑠   𝑁,𝑠   𝜑,𝑠

Proof of Theorem erdsze2lem2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . 5 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
2 erdsze2.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 nnm1nn0 12274 . . . . . . 7 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑅 − 1) ∈ ℕ0)
5 erdsze2.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
6 nnm1nn0 12274 . . . . . . 7 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
75, 6syl 17 . . . . . 6 (𝜑 → (𝑆 − 1) ∈ ℕ0)
84, 7nn0mulcld 12298 . . . . 5 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈ ℕ0)
91, 8eqeltrid 2843 . . . 4 (𝜑𝑁 ∈ ℕ0)
10 nn0p1nn 12272 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
119, 10syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
12 erdsze2.f . . . 4 (𝜑𝐹:𝐴1-1→ℝ)
13 erdsze2lem.g . . . 4 (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
14 f1co 6682 . . . 4 ((𝐹:𝐴1-1→ℝ ∧ 𝐺:(1...(𝑁 + 1))–1-1𝐴) → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
1512, 13, 14syl2anc 584 . . 3 (𝜑 → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
169nn0red 12294 . . . . 5 (𝜑𝑁 ∈ ℝ)
1716ltp1d 11905 . . . 4 (𝜑𝑁 < (𝑁 + 1))
181, 17eqbrtrrid 5110 . . 3 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (𝑁 + 1))
1911, 15, 2, 5, 18erdsze 33164 . 2 (𝜑 → ∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))))
20 velpw 4538 . . . 4 (𝑡 ∈ 𝒫 (1...(𝑁 + 1)) ↔ 𝑡 ⊆ (1...(𝑁 + 1)))
21 imassrn 5980 . . . . . . . 8 (𝐺𝑡) ⊆ ran 𝐺
22 f1f 6670 . . . . . . . . . 10 (𝐺:(1...(𝑁 + 1))–1-1𝐴𝐺:(1...(𝑁 + 1))⟶𝐴)
2313, 22syl 17 . . . . . . . . 9 (𝜑𝐺:(1...(𝑁 + 1))⟶𝐴)
2423frnd 6608 . . . . . . . 8 (𝜑 → ran 𝐺𝐴)
2521, 24sstrid 3932 . . . . . . 7 (𝜑 → (𝐺𝑡) ⊆ 𝐴)
26 erdsze2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
27 reex 10962 . . . . . . . . 9 ℝ ∈ V
28 ssexg 5247 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ℝ ∈ V) → 𝐴 ∈ V)
2926, 27, 28sylancl 586 . . . . . . . 8 (𝜑𝐴 ∈ V)
30 elpw2g 5268 . . . . . . . 8 (𝐴 ∈ V → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3129, 30syl 17 . . . . . . 7 (𝜑 → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3225, 31mpbird 256 . . . . . 6 (𝜑 → (𝐺𝑡) ∈ 𝒫 𝐴)
3332adantr 481 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ 𝒫 𝐴)
34 vex 3436 . . . . . . . . . . . 12 𝑡 ∈ V
3534f1imaen 8802 . . . . . . . . . . 11 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
3613, 35sylan 580 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
37 fzfid 13693 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ∈ Fin)
38 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ⊆ (1...(𝑁 + 1)))
39 ssfi 8956 . . . . . . . . . . . . 13 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
4037, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
41 enfii 8972 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ (𝐺𝑡) ≈ 𝑡) → (𝐺𝑡) ∈ Fin)
4240, 36, 41syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ Fin)
43 hashen 14061 . . . . . . . . . . 11 (((𝐺𝑡) ∈ Fin ∧ 𝑡 ∈ Fin) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4442, 40, 43syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((♯‘(𝐺𝑡)) = (♯‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4536, 44mpbird 256 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (♯‘(𝐺𝑡)) = (♯‘𝑡))
4645breq2d 5086 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ↔ 𝑅 ≤ (♯‘𝑡)))
4746biimprd 247 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘𝑡) → 𝑅 ≤ (♯‘(𝐺𝑡))))
48 erdsze2lem.i . . . . . . . . . . . . . . 15 (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
4948ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
5038adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑡 ⊆ (1...(𝑁 + 1)))
51 simprl 768 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥𝑡)
5250, 51sseldd 3922 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥 ∈ (1...(𝑁 + 1)))
53 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦𝑡)
5450, 53sseldd 3922 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦 ∈ (1...(𝑁 + 1)))
55 isorel 7197 . . . . . . . . . . . . . 14 ((𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺) ∧ (𝑥 ∈ (1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1)))) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5649, 52, 54, 55syl12anc 834 . . . . . . . . . . . . 13 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5756biimpd 228 . . . . . . . . . . . 12 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
5857ralrimivva 3123 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
59 elfznn 13285 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℕ)
6059nnred 11988 . . . . . . . . . . . . . . 15 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℝ)
6160ssriv 3925 . . . . . . . . . . . . . 14 (1...(𝑁 + 1)) ⊆ ℝ
6261a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ⊆ ℝ)
63 ltso 11055 . . . . . . . . . . . . 13 < Or ℝ
64 soss 5523 . . . . . . . . . . . . 13 ((1...(𝑁 + 1)) ⊆ ℝ → ( < Or ℝ → < Or (1...(𝑁 + 1))))
6562, 63, 64mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or (1...(𝑁 + 1)))
6626adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐴 ⊆ ℝ)
67 soss 5523 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
6866, 63, 67mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or 𝐴)
6923adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
70 soisores 7198 . . . . . . . . . . . 12 ((( < Or (1...(𝑁 + 1)) ∧ < Or 𝐴) ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴𝑡 ⊆ (1...(𝑁 + 1)))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7165, 68, 69, 38, 70syl22anc 836 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7258, 71mpbird 256 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)))
73 isocnv 7201 . . . . . . . . . 10 ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
7472, 73syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
75 isotr 7207 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
7675ex 413 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
7774, 76syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
78 resco 6154 . . . . . . . . . . . . 13 ((𝐹𝐺) ↾ 𝑡) = (𝐹 ∘ (𝐺𝑡))
7978coeq1i 5768 . . . . . . . . . . . 12 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡))
80 coass 6169 . . . . . . . . . . . 12 ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
8179, 80eqtri 2766 . . . . . . . . . . 11 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
82 f1ores 6730 . . . . . . . . . . . . . . 15 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
8313, 82sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
84 f1ococnv2 6743 . . . . . . . . . . . . . 14 ((𝐺𝑡):𝑡1-1-onto→(𝐺𝑡) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8583, 84syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8685coeq2d 5771 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ∘ ( I ↾ (𝐺𝑡))))
87 coires1 6168 . . . . . . . . . . . 12 (𝐹 ∘ ( I ↾ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡))
8886, 87eqtrdi 2794 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡)))
8981, 88eqtrid 2790 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)))
90 isoeq1 7188 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
9189, 90syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
92 imaco 6155 . . . . . . . . . 10 ((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡))
93 isoeq5 7192 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9492, 93ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
9591, 94bitrdi 287 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9677, 95sylibd 238 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9747, 96anim12d 609 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
9845breq2d 5086 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ↔ 𝑆 ≤ (♯‘𝑡)))
9998biimprd 247 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘𝑡) → 𝑆 ≤ (♯‘(𝐺𝑡))))
100 isotr 7207 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
101100ex 413 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10274, 101syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
103 isoeq1 7188 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10489, 103syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
105 isoeq5 7192 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10692, 105ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
107104, 106bitrdi 287 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
108102, 107sylibd 238 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10999, 108anim12d 609 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
11097, 109orim12d 962 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
111 fveq2 6774 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → (♯‘𝑠) = (♯‘(𝐺𝑡)))
112111breq2d 5086 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑅 ≤ (♯‘𝑠) ↔ 𝑅 ≤ (♯‘(𝐺𝑡))))
113 reseq2 5886 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)))
114 isoeq1 7188 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
115113, 114syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
116 isoeq4 7191 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
117 imaeq2 5965 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 “ (𝐺𝑡)))
118 isoeq5 7192 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
119117, 118syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
120115, 116, 1193bitrd 305 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
121112, 120anbi12d 631 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
122111breq2d 5086 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑆 ≤ (♯‘𝑠) ↔ 𝑆 ≤ (♯‘(𝐺𝑡))))
123 isoeq1 7188 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
124113, 123syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
125 isoeq4 7191 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
126 isoeq5 7192 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
127117, 126syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
128124, 125, 1273bitrd 305 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
129122, 128anbi12d 631 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
130121, 129orbi12d 916 . . . . . 6 (𝑠 = (𝐺𝑡) → (((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
131130rspcev 3561 . . . . 5 (((𝐺𝑡) ∈ 𝒫 𝐴 ∧ ((𝑅 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
13233, 110, 131syl6an 681 . . . 4 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13320, 132sylan2b 594 . . 3 ((𝜑𝑡 ∈ 𝒫 (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
134133rexlimdva 3213 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13519, 134mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  𝒫 cpw 4533   class class class wbr 5074   I cid 5488   Or wor 5502  ccnv 5588  ran crn 5590  cres 5591  cima 5592  ccom 5593  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434  (class class class)co 7275  cen 8730  Fincfn 8733  cr 10870  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  erdsze2  33167
  Copyright terms: Public domain W3C validator