| Step | Hyp | Ref
| Expression |
| 1 | | erdsze2lem.n |
. . . . 5
⊢ 𝑁 = ((𝑅 − 1) · (𝑆 − 1)) |
| 2 | | erdsze2.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℕ) |
| 3 | | nnm1nn0 12567 |
. . . . . . 7
⊢ (𝑅 ∈ ℕ → (𝑅 − 1) ∈
ℕ0) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑅 − 1) ∈
ℕ0) |
| 5 | | erdsze2.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℕ) |
| 6 | | nnm1nn0 12567 |
. . . . . . 7
⊢ (𝑆 ∈ ℕ → (𝑆 − 1) ∈
ℕ0) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑆 − 1) ∈
ℕ0) |
| 8 | 4, 7 | nn0mulcld 12592 |
. . . . 5
⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈
ℕ0) |
| 9 | 1, 8 | eqeltrid 2845 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 10 | | nn0p1nn 12565 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
| 11 | 9, 10 | syl 17 |
. . 3
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
| 12 | | erdsze2.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) |
| 13 | | erdsze2lem.g |
. . . 4
⊢ (𝜑 → 𝐺:(1...(𝑁 + 1))–1-1→𝐴) |
| 14 | | f1co 6815 |
. . . 4
⊢ ((𝐹:𝐴–1-1→ℝ ∧ 𝐺:(1...(𝑁 + 1))–1-1→𝐴) → (𝐹 ∘ 𝐺):(1...(𝑁 + 1))–1-1→ℝ) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐹 ∘ 𝐺):(1...(𝑁 + 1))–1-1→ℝ) |
| 16 | 9 | nn0red 12588 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 17 | 16 | ltp1d 12198 |
. . . 4
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) |
| 18 | 1, 17 | eqbrtrrid 5179 |
. . 3
⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (𝑁 + 1)) |
| 19 | 11, 15, 2, 5, 18 | erdsze 35207 |
. 2
⊢ (𝜑 → ∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))))) |
| 20 | | velpw 4605 |
. . . 4
⊢ (𝑡 ∈ 𝒫 (1...(𝑁 + 1)) ↔ 𝑡 ⊆ (1...(𝑁 + 1))) |
| 21 | | imassrn 6089 |
. . . . . . . 8
⊢ (𝐺 “ 𝑡) ⊆ ran 𝐺 |
| 22 | | f1f 6804 |
. . . . . . . . . 10
⊢ (𝐺:(1...(𝑁 + 1))–1-1→𝐴 → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
| 23 | 13, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
| 24 | 23 | frnd 6744 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐺 ⊆ 𝐴) |
| 25 | 21, 24 | sstrid 3995 |
. . . . . . 7
⊢ (𝜑 → (𝐺 “ 𝑡) ⊆ 𝐴) |
| 26 | | erdsze2.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 27 | | reex 11246 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 28 | | ssexg 5323 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ ℝ
∈ V) → 𝐴 ∈
V) |
| 29 | 26, 27, 28 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ V) |
| 30 | | elpw2g 5333 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ((𝐺 “ 𝑡) ∈ 𝒫 𝐴 ↔ (𝐺 “ 𝑡) ⊆ 𝐴)) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 “ 𝑡) ∈ 𝒫 𝐴 ↔ (𝐺 “ 𝑡) ⊆ 𝐴)) |
| 32 | 25, 31 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → (𝐺 “ 𝑡) ∈ 𝒫 𝐴) |
| 33 | 32 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺 “ 𝑡) ∈ 𝒫 𝐴) |
| 34 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑡 ∈ V |
| 35 | 34 | f1imaen 9057 |
. . . . . . . . . . 11
⊢ ((𝐺:(1...(𝑁 + 1))–1-1→𝐴 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺 “ 𝑡) ≈ 𝑡) |
| 36 | 13, 35 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺 “ 𝑡) ≈ 𝑡) |
| 37 | | fzfid 14014 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ∈ Fin) |
| 38 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ⊆ (1...(𝑁 + 1))) |
| 39 | | ssfi 9213 |
. . . . . . . . . . . . 13
⊢
(((1...(𝑁 + 1))
∈ Fin ∧ 𝑡 ⊆
(1...(𝑁 + 1))) → 𝑡 ∈ Fin) |
| 40 | 37, 38, 39 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin) |
| 41 | | enfii 9226 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ Fin ∧ (𝐺 “ 𝑡) ≈ 𝑡) → (𝐺 “ 𝑡) ∈ Fin) |
| 42 | 40, 36, 41 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺 “ 𝑡) ∈ Fin) |
| 43 | | hashen 14386 |
. . . . . . . . . . 11
⊢ (((𝐺 “ 𝑡) ∈ Fin ∧ 𝑡 ∈ Fin) → ((♯‘(𝐺 “ 𝑡)) = (♯‘𝑡) ↔ (𝐺 “ 𝑡) ≈ 𝑡)) |
| 44 | 42, 40, 43 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((♯‘(𝐺 “ 𝑡)) = (♯‘𝑡) ↔ (𝐺 “ 𝑡) ≈ 𝑡)) |
| 45 | 36, 44 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (♯‘(𝐺 “ 𝑡)) = (♯‘𝑡)) |
| 46 | 45 | breq2d 5155 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘(𝐺 “ 𝑡)) ↔ 𝑅 ≤ (♯‘𝑡))) |
| 47 | 46 | biimprd 248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (♯‘𝑡) → 𝑅 ≤ (♯‘(𝐺 “ 𝑡)))) |
| 48 | | erdsze2lem.i |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺)) |
| 49 | 48 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺)) |
| 50 | 38 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → 𝑡 ⊆ (1...(𝑁 + 1))) |
| 51 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → 𝑥 ∈ 𝑡) |
| 52 | 50, 51 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → 𝑥 ∈ (1...(𝑁 + 1))) |
| 53 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ 𝑡) |
| 54 | 50, 53 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ (1...(𝑁 + 1))) |
| 55 | | isorel 7346 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺) ∧ (𝑥 ∈ (1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1)))) → (𝑥 < 𝑦 ↔ (𝐺‘𝑥) < (𝐺‘𝑦))) |
| 56 | 49, 52, 54, 55 | syl12anc 837 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → (𝑥 < 𝑦 ↔ (𝐺‘𝑥) < (𝐺‘𝑦))) |
| 57 | 56 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → (𝑥 < 𝑦 → (𝐺‘𝑥) < (𝐺‘𝑦))) |
| 58 | 57 | ralrimivva 3202 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥 < 𝑦 → (𝐺‘𝑥) < (𝐺‘𝑦))) |
| 59 | | elfznn 13593 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℕ) |
| 60 | 59 | nnred 12281 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℝ) |
| 61 | 60 | ssriv 3987 |
. . . . . . . . . . . . . 14
⊢
(1...(𝑁 + 1))
⊆ ℝ |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ⊆ ℝ) |
| 63 | | ltso 11341 |
. . . . . . . . . . . . 13
⊢ < Or
ℝ |
| 64 | | soss 5612 |
. . . . . . . . . . . . 13
⊢
((1...(𝑁 + 1))
⊆ ℝ → ( < Or ℝ → < Or (1...(𝑁 + 1)))) |
| 65 | 62, 63, 64 | mpisyl 21 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → < Or (1...(𝑁 + 1))) |
| 66 | 26 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝐴 ⊆ ℝ) |
| 67 | | soss 5612 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ ℝ → ( <
Or ℝ → < Or 𝐴)) |
| 68 | 66, 63, 67 | mpisyl 21 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → < Or 𝐴) |
| 69 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝐺:(1...(𝑁 + 1))⟶𝐴) |
| 70 | | soisores 7347 |
. . . . . . . . . . . 12
⊢ ((( <
Or (1...(𝑁 + 1)) ∧ <
Or 𝐴) ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ 𝑡 ⊆ (1...(𝑁 + 1)))) → ((𝐺 ↾ 𝑡) Isom < , < (𝑡, (𝐺 “ 𝑡)) ↔ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥 < 𝑦 → (𝐺‘𝑥) < (𝐺‘𝑦)))) |
| 71 | 65, 68, 69, 38, 70 | syl22anc 839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺 ↾ 𝑡) Isom < , < (𝑡, (𝐺 “ 𝑡)) ↔ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥 < 𝑦 → (𝐺‘𝑥) < (𝐺‘𝑦)))) |
| 72 | 58, 71 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ 𝑡) Isom < , < (𝑡, (𝐺 “ 𝑡))) |
| 73 | | isocnv 7350 |
. . . . . . . . . 10
⊢ ((𝐺 ↾ 𝑡) Isom < , < (𝑡, (𝐺 “ 𝑡)) → ◡(𝐺 ↾ 𝑡) Isom < , < ((𝐺 “ 𝑡), 𝑡)) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ◡(𝐺 ↾ 𝑡) Isom < , < ((𝐺 “ 𝑡), 𝑡)) |
| 75 | | isotr 7356 |
. . . . . . . . . 10
⊢ ((◡(𝐺 ↾ 𝑡) Isom < , < ((𝐺 “ 𝑡), 𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) → (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡))) |
| 76 | 75 | ex 412 |
. . . . . . . . 9
⊢ (◡(𝐺 ↾ 𝑡) Isom < , < ((𝐺 “ 𝑡), 𝑡) → (((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)) → (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 77 | 74, 76 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)) → (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 78 | | resco 6270 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∘ 𝐺) ↾ 𝑡) = (𝐹 ∘ (𝐺 ↾ 𝑡)) |
| 79 | 78 | coeq1i 5870 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) = ((𝐹 ∘ (𝐺 ↾ 𝑡)) ∘ ◡(𝐺 ↾ 𝑡)) |
| 80 | | coass 6285 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∘ (𝐺 ↾ 𝑡)) ∘ ◡(𝐺 ↾ 𝑡)) = (𝐹 ∘ ((𝐺 ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡))) |
| 81 | 79, 80 | eqtri 2765 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) = (𝐹 ∘ ((𝐺 ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡))) |
| 82 | | f1ores 6862 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:(1...(𝑁 + 1))–1-1→𝐴 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ 𝑡):𝑡–1-1-onto→(𝐺 “ 𝑡)) |
| 83 | 13, 82 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ 𝑡):𝑡–1-1-onto→(𝐺 “ 𝑡)) |
| 84 | | f1ococnv2 6875 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ↾ 𝑡):𝑡–1-1-onto→(𝐺 “ 𝑡) → ((𝐺 ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) = ( I ↾ (𝐺 “ 𝑡))) |
| 85 | 83, 84 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺 ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) = ( I ↾ (𝐺 “ 𝑡))) |
| 86 | 85 | coeq2d 5873 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺 ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡))) = (𝐹 ∘ ( I ↾ (𝐺 “ 𝑡)))) |
| 87 | | coires1 6284 |
. . . . . . . . . . . 12
⊢ (𝐹 ∘ ( I ↾ (𝐺 “ 𝑡))) = (𝐹 ↾ (𝐺 “ 𝑡)) |
| 88 | 86, 87 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺 ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡))) = (𝐹 ↾ (𝐺 “ 𝑡))) |
| 89 | 81, 88 | eqtrid 2789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) = (𝐹 ↾ (𝐺 “ 𝑡))) |
| 90 | | isoeq1 7337 |
. . . . . . . . . 10
⊢ ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) = (𝐹 ↾ (𝐺 “ 𝑡)) → ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 91 | 89, 90 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 92 | | imaco 6271 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝐺) “ 𝑡) = (𝐹 “ (𝐺 “ 𝑡)) |
| 93 | | isoeq5 7341 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝐺) “ 𝑡) = (𝐹 “ (𝐺 “ 𝑡)) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 94 | 92, 93 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))) |
| 95 | 91, 94 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 96 | 77, 95 | sylibd 239 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 97 | 47, 96 | anim12d 609 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) → (𝑅 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))))) |
| 98 | 45 | breq2d 5155 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘(𝐺 “ 𝑡)) ↔ 𝑆 ≤ (♯‘𝑡))) |
| 99 | 98 | biimprd 248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (♯‘𝑡) → 𝑆 ≤ (♯‘(𝐺 “ 𝑡)))) |
| 100 | | isotr 7356 |
. . . . . . . . . 10
⊢ ((◡(𝐺 ↾ 𝑡) Isom < , < ((𝐺 “ 𝑡), 𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) → (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡))) |
| 101 | 100 | ex 412 |
. . . . . . . . 9
⊢ (◡(𝐺 ↾ 𝑡) Isom < , < ((𝐺 “ 𝑡), 𝑡) → (((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)) → (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 102 | 74, 101 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)) → (((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 103 | | isoeq1 7337 |
. . . . . . . . . 10
⊢ ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) = (𝐹 ↾ (𝐺 “ 𝑡)) → ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 104 | 89, 103 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)))) |
| 105 | | isoeq5 7341 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝐺) “ 𝑡) = (𝐹 “ (𝐺 “ 𝑡)) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 106 | 92, 105 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))) |
| 107 | 104, 106 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹 ∘ 𝐺) ↾ 𝑡) ∘ ◡(𝐺 ↾ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), ((𝐹 ∘ 𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 108 | 102, 107 | sylibd 239 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 109 | 99, 108 | anim12d 609 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑆 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) → (𝑆 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))))) |
| 110 | 97, 109 | orim12d 967 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)))) → ((𝑅 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))))) |
| 111 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑠 = (𝐺 “ 𝑡) → (♯‘𝑠) = (♯‘(𝐺 “ 𝑡))) |
| 112 | 111 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑠 = (𝐺 “ 𝑡) → (𝑅 ≤ (♯‘𝑠) ↔ 𝑅 ≤ (♯‘(𝐺 “ 𝑡)))) |
| 113 | | reseq2 5992 |
. . . . . . . . . 10
⊢ (𝑠 = (𝐺 “ 𝑡) → (𝐹 ↾ 𝑠) = (𝐹 ↾ (𝐺 “ 𝑡))) |
| 114 | | isoeq1 7337 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝑠) = (𝐹 ↾ (𝐺 “ 𝑡)) → ((𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < (𝑠, (𝐹 “ 𝑠)))) |
| 115 | 113, 114 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < (𝑠, (𝐹 “ 𝑠)))) |
| 116 | | isoeq4 7340 |
. . . . . . . . 9
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ 𝑠)))) |
| 117 | | imaeq2 6074 |
. . . . . . . . . 10
⊢ (𝑠 = (𝐺 “ 𝑡) → (𝐹 “ 𝑠) = (𝐹 “ (𝐺 “ 𝑡))) |
| 118 | | isoeq5 7341 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑠) = (𝐹 “ (𝐺 “ 𝑡)) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 119 | 117, 118 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 120 | 115, 116,
119 | 3bitrd 305 |
. . . . . . . 8
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 121 | 112, 120 | anbi12d 632 |
. . . . . . 7
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ↔ (𝑅 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))))) |
| 122 | 111 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑠 = (𝐺 “ 𝑡) → (𝑆 ≤ (♯‘𝑠) ↔ 𝑆 ≤ (♯‘(𝐺 “ 𝑡)))) |
| 123 | | isoeq1 7337 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝑠) = (𝐹 ↾ (𝐺 “ 𝑡)) → ((𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))) |
| 124 | 113, 123 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))) |
| 125 | | isoeq4 7340 |
. . . . . . . . 9
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ 𝑠)))) |
| 126 | | isoeq5 7341 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑠) = (𝐹 “ (𝐺 “ 𝑡)) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 127 | 117, 126 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 128 | 124, 125,
127 | 3bitrd 305 |
. . . . . . . 8
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)) ↔ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))) |
| 129 | 122, 128 | anbi12d 632 |
. . . . . . 7
⊢ (𝑠 = (𝐺 “ 𝑡) → ((𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))) ↔ (𝑆 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))))) |
| 130 | 121, 129 | orbi12d 919 |
. . . . . 6
⊢ (𝑠 = (𝐺 “ 𝑡) → (((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))) ↔ ((𝑅 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡))))))) |
| 131 | 130 | rspcev 3622 |
. . . . 5
⊢ (((𝐺 “ 𝑡) ∈ 𝒫 𝐴 ∧ ((𝑅 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))) ∨ (𝑆 ≤ (♯‘(𝐺 “ 𝑡)) ∧ (𝐹 ↾ (𝐺 “ 𝑡)) Isom < , ◡ < ((𝐺 “ 𝑡), (𝐹 “ (𝐺 “ 𝑡)))))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| 132 | 33, 110, 131 | syl6an 684 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))))) |
| 133 | 20, 132 | sylan2b 594 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 (1...(𝑁 + 1))) → (((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))))) |
| 134 | 133 | rexlimdva 3155 |
. 2
⊢ (𝜑 → (∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡))) ∨ (𝑆 ≤ (♯‘𝑡) ∧ ((𝐹 ∘ 𝐺) ↾ 𝑡) Isom < , ◡ < (𝑡, ((𝐹 ∘ 𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠)))))) |
| 135 | 19, 134 | mpd 15 |
1
⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |