Proof of Theorem isercolllem3
Step | Hyp | Ref
| Expression |
1 | | addid2 11088 |
. . 3
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
2 | 1 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 +
𝑛) = 𝑛) |
3 | | addid1 11085 |
. . 3
⊢ (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛) |
4 | 3 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛) |
5 | | addcl 10884 |
. . 3
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ) |
6 | 5 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ) |
7 | | 0cnd 10899 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 0 ∈
ℂ) |
8 | | cnvimass 5978 |
. . . . 5
⊢ (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 |
9 | | isercoll.g |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶𝑍) |
10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍) |
11 | 8, 10 | fssdm 6604 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) |
12 | | isercoll.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
13 | | isercoll.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | | isercoll.i |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
15 | 12, 13, 9, 14 | isercolllem1 15304 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
16 | 11, 15 | syldan 590 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
17 | 12, 13, 9, 14 | isercolllem2 15305 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁))) |
18 | | isoeq4 7171 |
. . . 4
⊢
((1...(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |
19 | 17, 18 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |
20 | 16, 19 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
21 | 8 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺) |
22 | | sseqin2 4146 |
. . . . 5
⊢ ((◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) |
23 | 21, 22 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) |
24 | | 1nn 11914 |
. . . . . . 7
⊢ 1 ∈
ℕ |
25 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
ℕ) |
26 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) →
(𝐺‘1) ∈ 𝑍) |
27 | 9, 24, 26 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈ 𝑍) |
28 | 27, 12 | eleqtrdi 2849 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
29 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
30 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝑁 ∈
(ℤ≥‘(𝐺‘1))) |
31 | | elfzuzb 13179 |
. . . . . . 7
⊢ ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1)))) |
32 | 29, 30, 31 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁)) |
33 | | ffn 6584 |
. . . . . . 7
⊢ (𝐺:ℕ⟶𝑍 → 𝐺 Fn ℕ) |
34 | | elpreima 6917 |
. . . . . . 7
⊢ (𝐺 Fn ℕ → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
35 | 10, 33, 34 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
36 | 25, 32, 35 | mpbir2and 709 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
(◡𝐺 “ (𝑀...𝑁))) |
37 | 36 | ne0d 4266 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ≠ ∅) |
38 | 23, 37 | eqnetrd 3010 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
39 | | imadisj 5977 |
. . . 4
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = ∅) |
40 | 39 | necon3bii 2995 |
. . 3
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
41 | 38, 40 | sylibr 233 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
42 | | ffun 6587 |
. . . 4
⊢ (𝐺:ℕ⟶𝑍 → Fun 𝐺) |
43 | | funimacnv 6499 |
. . . 4
⊢ (Fun
𝐺 → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
44 | 10, 42, 43 | 3syl 18 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
45 | | inss1 4159 |
. . 3
⊢ ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁) |
46 | 44, 45 | eqsstrdi 3971 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁)) |
47 | | simpl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝜑) |
48 | | elfzuz 13181 |
. . . 4
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
49 | 48, 12 | eleqtrrdi 2850 |
. . 3
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ 𝑍) |
50 | | isercoll.f |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
51 | 47, 49, 50 | syl2an 595 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹‘𝑛) ∈ ℂ) |
52 | 44 | difeq2d 4053 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺))) |
53 | | difin 4192 |
. . . . . 6
⊢ ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺) |
54 | 52, 53 | eqtrdi 2795 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺)) |
55 | 49 | ssriv 3921 |
. . . . . 6
⊢ (𝑀...𝑁) ⊆ 𝑍 |
56 | | ssdif 4070 |
. . . . . 6
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) |
57 | 55, 56 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) |
58 | 54, 57 | eqsstrd 3955 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺)) |
59 | 58 | sselda 3917 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺)) |
60 | | isercoll.0 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
61 | 60 | adantlr 711 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
62 | 59, 61 | syldan 590 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → (𝐹‘𝑛) = 0) |
63 | | elfznn 13214 |
. . . 4
⊢ (𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ) |
64 | | isercoll.h |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
65 | 47, 63, 64 | syl2an 595 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
66 | 17 | eleq2d 2824 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁)))) |
67 | 66 | biimpa 476 |
. . . . 5
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁))) |
68 | 67 | fvresd 6776 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺‘𝑘)) |
69 | 68 | fveq2d 6760 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺‘𝑘))) |
70 | 65, 69 | eqtr4d 2781 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘))) |
71 | 2, 4, 6, 7, 20, 41, 46, 51, 62, 70 | seqcoll2 14107 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |