MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem3 Structured version   Visualization version   GIF version

Theorem isercolllem3 15477
Description: Lemma for isercoll 15478. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll.0 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll.f ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
isercoll.h ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercolllem3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑘,𝑀,𝑛   𝑛,𝑍
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem3
StepHypRef Expression
1 addid2 11259 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 482 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 addid1 11256 . . 3 (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛)
43adantl 482 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛)
5 addcl 11054 . . 3 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ)
65adantl 482 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ)
7 0cnd 11069 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 0 ∈ ℂ)
8 cnvimass 6019 . . . . 5 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
9 isercoll.g . . . . . 6 (𝜑𝐺:ℕ⟶𝑍)
109adantr 481 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
118, 10fssdm 6671 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
12 isercoll.z . . . . 5 𝑍 = (ℤ𝑀)
13 isercoll.m . . . . 5 (𝜑𝑀 ∈ ℤ)
14 isercoll.i . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
1512, 13, 9, 14isercolllem1 15475 . . . 4 ((𝜑 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1611, 15syldan 591 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1712, 13, 9, 14isercolllem2 15476 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
18 isoeq4 7247 . . . 4 ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
1917, 18syl 17 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
2016, 19mpbird 256 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
218a1i 11 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺)
22 sseqin2 4162 . . . . 5 ((𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
2321, 22sylib 217 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
24 1nn 12085 . . . . . . 7 1 ∈ ℕ
2524a1i 11 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
26 ffvelcdm 7015 . . . . . . . . . 10 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
279, 24, 26sylancl 586 . . . . . . . . 9 (𝜑 → (𝐺‘1) ∈ 𝑍)
2827, 12eleqtrdi 2847 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
2928adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
30 simpr 485 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
31 elfzuzb 13351 . . . . . . 7 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
3229, 30, 31sylanbrc 583 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
33 ffn 6651 . . . . . . 7 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
34 elpreima 6991 . . . . . . 7 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3510, 33, 343syl 18 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3625, 32, 35mpbir2and 710 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
3736ne0d 4282 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
3823, 37eqnetrd 3008 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
39 imadisj 6018 . . . 4 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = ∅)
4039necon3bii 2993 . . 3 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
4138, 40sylibr 233 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
42 ffun 6654 . . . 4 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
43 funimacnv 6565 . . . 4 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
4410, 42, 433syl 18 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
45 inss1 4175 . . 3 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
4644, 45eqsstrdi 3986 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
47 simpl 483 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝜑)
48 elfzuz 13353 . . . 4 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
4948, 12eleqtrrdi 2848 . . 3 (𝑛 ∈ (𝑀...𝑁) → 𝑛𝑍)
50 isercoll.f . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
5147, 49, 50syl2an 596 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ∈ ℂ)
5244difeq2d 4069 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)))
53 difin 4208 . . . . . 6 ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺)
5452, 53eqtrdi 2792 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺))
5549ssriv 3936 . . . . . 6 (𝑀...𝑁) ⊆ 𝑍
56 ssdif 4086 . . . . . 6 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
5755, 56mp1i 13 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
5854, 57eqsstrd 3970 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺))
5958sselda 3932 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺))
60 isercoll.0 . . . 4 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6160adantlr 712 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6259, 61syldan 591 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → (𝐹𝑛) = 0)
63 elfznn 13386 . . . 4 (𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ)
64 isercoll.h . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
6547, 63, 64syl2an 596 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
6617eleq2d 2822 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (𝐺 “ (𝑀...𝑁))))
6766biimpa 477 . . . . 5 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (𝐺 “ (𝑀...𝑁)))
6867fvresd 6845 . . . 4 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺𝑘))
6968fveq2d 6829 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺𝑘)))
7065, 69eqtr4d 2779 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)))
712, 4, 6, 7, 20, 41, 46, 51, 62, 70seqcoll2 14279 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  cdif 3895  cin 3897  wss 3898  c0 4269   class class class wbr 5092  ccnv 5619  dom cdm 5620  ran crn 5621  cres 5622  cima 5623  Fun wfun 6473   Fn wfn 6474  wf 6475  cfv 6479   Isom wiso 6480  (class class class)co 7337  cc 10970  0cc0 10972  1c1 10973   + caddc 10975   < clt 11110  cn 12074  cz 12420  cuz 12683  ...cfz 13340  seqcseq 13822  chash 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-seq 13823  df-hash 14146
This theorem is referenced by:  isercoll  15478
  Copyright terms: Public domain W3C validator