Proof of Theorem isercolllem3
| Step | Hyp | Ref
| Expression |
| 1 | | addlid 11423 |
. . 3
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
| 2 | 1 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 +
𝑛) = 𝑛) |
| 3 | | addrid 11420 |
. . 3
⊢ (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛) |
| 4 | 3 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛) |
| 5 | | addcl 11216 |
. . 3
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ) |
| 6 | 5 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ) |
| 7 | | 0cnd 11233 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 0 ∈
ℂ) |
| 8 | | cnvimass 6074 |
. . . . 5
⊢ (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 |
| 9 | | isercoll.g |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶𝑍) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍) |
| 11 | 8, 10 | fssdm 6730 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) |
| 12 | | isercoll.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 13 | | isercoll.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 14 | | isercoll.i |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
| 15 | 12, 13, 9, 14 | isercolllem1 15686 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
| 16 | 11, 15 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
| 17 | 12, 13, 9, 14 | isercolllem2 15687 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁))) |
| 18 | | isoeq4 7318 |
. . . 4
⊢
((1...(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |
| 19 | 17, 18 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |
| 20 | 16, 19 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
| 21 | 8 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺) |
| 22 | | sseqin2 4203 |
. . . . 5
⊢ ((◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) |
| 23 | 21, 22 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) |
| 24 | | 1nn 12256 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 25 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
ℕ) |
| 26 | | ffvelcdm 7076 |
. . . . . . . . . 10
⊢ ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) →
(𝐺‘1) ∈ 𝑍) |
| 27 | 9, 24, 26 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈ 𝑍) |
| 28 | 27, 12 | eleqtrdi 2845 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
| 29 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
| 30 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝑁 ∈
(ℤ≥‘(𝐺‘1))) |
| 31 | | elfzuzb 13540 |
. . . . . . 7
⊢ ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1)))) |
| 32 | 29, 30, 31 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁)) |
| 33 | | ffn 6711 |
. . . . . . 7
⊢ (𝐺:ℕ⟶𝑍 → 𝐺 Fn ℕ) |
| 34 | | elpreima 7053 |
. . . . . . 7
⊢ (𝐺 Fn ℕ → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
| 35 | 10, 33, 34 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
| 36 | 25, 32, 35 | mpbir2and 713 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
(◡𝐺 “ (𝑀...𝑁))) |
| 37 | 36 | ne0d 4322 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ≠ ∅) |
| 38 | 23, 37 | eqnetrd 3000 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
| 39 | | imadisj 6072 |
. . . 4
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = ∅) |
| 40 | 39 | necon3bii 2985 |
. . 3
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
| 41 | 38, 40 | sylibr 234 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
| 42 | | ffun 6714 |
. . . 4
⊢ (𝐺:ℕ⟶𝑍 → Fun 𝐺) |
| 43 | | funimacnv 6622 |
. . . 4
⊢ (Fun
𝐺 → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
| 44 | 10, 42, 43 | 3syl 18 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
| 45 | | inss1 4217 |
. . 3
⊢ ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁) |
| 46 | 44, 45 | eqsstrdi 4008 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁)) |
| 47 | | simpl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝜑) |
| 48 | | elfzuz 13542 |
. . . 4
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 49 | 48, 12 | eleqtrrdi 2846 |
. . 3
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ 𝑍) |
| 50 | | isercoll.f |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
| 51 | 47, 49, 50 | syl2an 596 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹‘𝑛) ∈ ℂ) |
| 52 | 44 | difeq2d 4106 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺))) |
| 53 | | difin 4252 |
. . . . . 6
⊢ ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺) |
| 54 | 52, 53 | eqtrdi 2787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺)) |
| 55 | 49 | ssriv 3967 |
. . . . . 6
⊢ (𝑀...𝑁) ⊆ 𝑍 |
| 56 | | ssdif 4124 |
. . . . . 6
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) |
| 57 | 55, 56 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) |
| 58 | 54, 57 | eqsstrd 3998 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺)) |
| 59 | 58 | sselda 3963 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺)) |
| 60 | | isercoll.0 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
| 61 | 60 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
| 62 | 59, 61 | syldan 591 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → (𝐹‘𝑛) = 0) |
| 63 | | elfznn 13575 |
. . . 4
⊢ (𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ) |
| 64 | | isercoll.h |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 65 | 47, 63, 64 | syl2an 596 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 66 | 17 | eleq2d 2821 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁)))) |
| 67 | 66 | biimpa 476 |
. . . . 5
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁))) |
| 68 | 67 | fvresd 6901 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺‘𝑘)) |
| 69 | 68 | fveq2d 6885 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺‘𝑘))) |
| 70 | 65, 69 | eqtr4d 2774 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘))) |
| 71 | 2, 4, 6, 7, 20, 41, 46, 51, 62, 70 | seqcoll2 14488 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |