MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem3 Structured version   Visualization version   GIF version

Theorem isercolllem3 15688
Description: Lemma for isercoll 15689. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll.0 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll.f ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
isercoll.h ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercolllem3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑘,𝑀,𝑛   𝑛,𝑍
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem3
StepHypRef Expression
1 addlid 11423 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 481 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 addrid 11420 . . 3 (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛)
43adantl 481 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛)
5 addcl 11216 . . 3 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ)
65adantl 481 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ)
7 0cnd 11233 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 0 ∈ ℂ)
8 cnvimass 6074 . . . . 5 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
9 isercoll.g . . . . . 6 (𝜑𝐺:ℕ⟶𝑍)
109adantr 480 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
118, 10fssdm 6730 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
12 isercoll.z . . . . 5 𝑍 = (ℤ𝑀)
13 isercoll.m . . . . 5 (𝜑𝑀 ∈ ℤ)
14 isercoll.i . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
1512, 13, 9, 14isercolllem1 15686 . . . 4 ((𝜑 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1611, 15syldan 591 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1712, 13, 9, 14isercolllem2 15687 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
18 isoeq4 7318 . . . 4 ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
1917, 18syl 17 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
2016, 19mpbird 257 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
218a1i 11 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺)
22 sseqin2 4203 . . . . 5 ((𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
2321, 22sylib 218 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
24 1nn 12256 . . . . . . 7 1 ∈ ℕ
2524a1i 11 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
26 ffvelcdm 7076 . . . . . . . . . 10 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
279, 24, 26sylancl 586 . . . . . . . . 9 (𝜑 → (𝐺‘1) ∈ 𝑍)
2827, 12eleqtrdi 2845 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
2928adantr 480 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
30 simpr 484 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
31 elfzuzb 13540 . . . . . . 7 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
3229, 30, 31sylanbrc 583 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
33 ffn 6711 . . . . . . 7 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
34 elpreima 7053 . . . . . . 7 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3510, 33, 343syl 18 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3625, 32, 35mpbir2and 713 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
3736ne0d 4322 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
3823, 37eqnetrd 3000 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
39 imadisj 6072 . . . 4 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = ∅)
4039necon3bii 2985 . . 3 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
4138, 40sylibr 234 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
42 ffun 6714 . . . 4 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
43 funimacnv 6622 . . . 4 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
4410, 42, 433syl 18 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
45 inss1 4217 . . 3 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
4644, 45eqsstrdi 4008 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
47 simpl 482 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝜑)
48 elfzuz 13542 . . . 4 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
4948, 12eleqtrrdi 2846 . . 3 (𝑛 ∈ (𝑀...𝑁) → 𝑛𝑍)
50 isercoll.f . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
5147, 49, 50syl2an 596 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ∈ ℂ)
5244difeq2d 4106 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)))
53 difin 4252 . . . . . 6 ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺)
5452, 53eqtrdi 2787 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺))
5549ssriv 3967 . . . . . 6 (𝑀...𝑁) ⊆ 𝑍
56 ssdif 4124 . . . . . 6 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
5755, 56mp1i 13 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
5854, 57eqsstrd 3998 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺))
5958sselda 3963 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺))
60 isercoll.0 . . . 4 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6160adantlr 715 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6259, 61syldan 591 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → (𝐹𝑛) = 0)
63 elfznn 13575 . . . 4 (𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ)
64 isercoll.h . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
6547, 63, 64syl2an 596 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
6617eleq2d 2821 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (𝐺 “ (𝑀...𝑁))))
6766biimpa 476 . . . . 5 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (𝐺 “ (𝑀...𝑁)))
6867fvresd 6901 . . . 4 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺𝑘))
6968fveq2d 6885 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺𝑘)))
7065, 69eqtr4d 2774 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)))
712, 4, 6, 7, 20, 41, 46, 51, 62, 70seqcoll2 14488 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  cdif 3928  cin 3930  wss 3931  c0 4313   class class class wbr 5124  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536   Isom wiso 6537  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cn 12245  cz 12593  cuz 12857  ...cfz 13529  seqcseq 14024  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-hash 14354
This theorem is referenced by:  isercoll  15689
  Copyright terms: Public domain W3C validator