MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem3 Structured version   Visualization version   GIF version

Theorem isercolllem3 14878
Description: Lemma for isercoll 14879. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll.0 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll.f ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
isercoll.h ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercolllem3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑘,𝑀,𝑛   𝑛,𝑍
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem3
StepHypRef Expression
1 addid2 10617 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 474 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 addid1 10614 . . 3 (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛)
43adantl 474 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛)
5 addcl 10411 . . 3 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ)
65adantl 474 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ)
7 0cnd 10426 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 0 ∈ ℂ)
8 cnvimass 5783 . . . . 5 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
9 isercoll.g . . . . . 6 (𝜑𝐺:ℕ⟶𝑍)
109adantr 473 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
118, 10fssdm 6354 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
12 isercoll.z . . . . 5 𝑍 = (ℤ𝑀)
13 isercoll.m . . . . 5 (𝜑𝑀 ∈ ℤ)
14 isercoll.i . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
1512, 13, 9, 14isercolllem1 14876 . . . 4 ((𝜑 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1611, 15syldan 582 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1712, 13, 9, 14isercolllem2 14877 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
18 isoeq4 6890 . . . 4 ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
1917, 18syl 17 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
2016, 19mpbird 249 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
218a1i 11 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺)
22 sseqin2 4073 . . . . 5 ((𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
2321, 22sylib 210 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
24 1nn 11446 . . . . . . 7 1 ∈ ℕ
2524a1i 11 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
26 ffvelrn 6668 . . . . . . . . . 10 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
279, 24, 26sylancl 577 . . . . . . . . 9 (𝜑 → (𝐺‘1) ∈ 𝑍)
2827, 12syl6eleq 2870 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
2928adantr 473 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
30 simpr 477 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
31 elfzuzb 12712 . . . . . . 7 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
3229, 30, 31sylanbrc 575 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
33 ffn 6338 . . . . . . 7 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
34 elpreima 6647 . . . . . . 7 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3510, 33, 343syl 18 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3625, 32, 35mpbir2and 700 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
3736ne0d 4181 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
3823, 37eqnetrd 3028 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
39 imadisj 5782 . . . 4 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = ∅)
4039necon3bii 3013 . . 3 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
4138, 40sylibr 226 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
42 ffun 6341 . . . 4 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
43 funimacnv 6262 . . . 4 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
4410, 42, 433syl 18 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
45 inss1 4086 . . 3 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
4644, 45syl6eqss 3905 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
47 simpl 475 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝜑)
48 elfzuz 12714 . . . 4 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
4948, 12syl6eleqr 2871 . . 3 (𝑛 ∈ (𝑀...𝑁) → 𝑛𝑍)
50 isercoll.f . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
5147, 49, 50syl2an 586 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ∈ ℂ)
5244difeq2d 3983 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)))
53 difin 4119 . . . . . 6 ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺)
5452, 53syl6eq 2824 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺))
5549ssriv 3856 . . . . . 6 (𝑀...𝑁) ⊆ 𝑍
56 ssdif 4000 . . . . . 6 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
5755, 56mp1i 13 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
5854, 57eqsstrd 3889 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺))
5958sselda 3852 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺))
60 isercoll.0 . . . 4 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6160adantlr 702 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6259, 61syldan 582 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → (𝐹𝑛) = 0)
63 elfznn 12746 . . . 4 (𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ)
64 isercoll.h . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
6547, 63, 64syl2an 586 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
6617eleq2d 2845 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (𝐺 “ (𝑀...𝑁))))
6766biimpa 469 . . . . 5 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (𝐺 “ (𝑀...𝑁)))
6867fvresd 6513 . . . 4 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺𝑘))
6968fveq2d 6497 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺𝑘)))
7065, 69eqtr4d 2811 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)))
712, 4, 6, 7, 20, 41, 46, 51, 62, 70seqcoll2 13630 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2961  cdif 3820  cin 3822  wss 3823  c0 4172   class class class wbr 4923  ccnv 5400  dom cdm 5401  ran crn 5402  cres 5403  cima 5404  Fun wfun 6176   Fn wfn 6177  wf 6178  cfv 6182   Isom wiso 6183  (class class class)co 6970  cc 10327  0cc0 10329  1c1 10330   + caddc 10332   < clt 10468  cn 11433  cz 11787  cuz 12052  ...cfz 12702  seqcseq 13178  chash 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-n0 11702  df-z 11788  df-uz 12053  df-fz 12703  df-seq 13179  df-hash 13500
This theorem is referenced by:  isercoll  14879
  Copyright terms: Public domain W3C validator