Proof of Theorem isercolllem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | addlid 11444 | . . 3
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) | 
| 2 | 1 | adantl 481 | . 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 +
𝑛) = 𝑛) | 
| 3 |  | addrid 11441 | . . 3
⊢ (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛) | 
| 4 | 3 | adantl 481 | . 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛) | 
| 5 |  | addcl 11237 | . . 3
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ) | 
| 6 | 5 | adantl 481 | . 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ) | 
| 7 |  | 0cnd 11254 | . 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 0 ∈
ℂ) | 
| 8 |  | cnvimass 6100 | . . . . 5
⊢ (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 | 
| 9 |  | isercoll.g | . . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶𝑍) | 
| 10 | 9 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍) | 
| 11 | 8, 10 | fssdm 6755 | . . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) | 
| 12 |  | isercoll.z | . . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 13 |  | isercoll.m | . . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 14 |  | isercoll.i | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) | 
| 15 | 12, 13, 9, 14 | isercolllem1 15701 | . . . 4
⊢ ((𝜑 ∧ (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) | 
| 16 | 11, 15 | syldan 591 | . . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) | 
| 17 | 12, 13, 9, 14 | isercolllem2 15702 | . . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁))) | 
| 18 |  | isoeq4 7340 | . . . 4
⊢
((1...(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) | 
| 19 | 17, 18 | syl 17 | . . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) | 
| 20 | 16, 19 | mpbird 257 | . 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , <
((1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) | 
| 21 | 8 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺) | 
| 22 |  | sseqin2 4223 | . . . . 5
⊢ ((◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) | 
| 23 | 21, 22 | sylib 218 | . . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) | 
| 24 |  | 1nn 12277 | . . . . . . 7
⊢ 1 ∈
ℕ | 
| 25 | 24 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
ℕ) | 
| 26 |  | ffvelcdm 7101 | . . . . . . . . . 10
⊢ ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) →
(𝐺‘1) ∈ 𝑍) | 
| 27 | 9, 24, 26 | sylancl 586 | . . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈ 𝑍) | 
| 28 | 27, 12 | eleqtrdi 2851 | . . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) | 
| 29 | 28 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈
(ℤ≥‘𝑀)) | 
| 30 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝑁 ∈
(ℤ≥‘(𝐺‘1))) | 
| 31 |  | elfzuzb 13558 | . . . . . . 7
⊢ ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1)))) | 
| 32 | 29, 30, 31 | sylanbrc 583 | . . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁)) | 
| 33 |  | ffn 6736 | . . . . . . 7
⊢ (𝐺:ℕ⟶𝑍 → 𝐺 Fn ℕ) | 
| 34 |  | elpreima 7078 | . . . . . . 7
⊢ (𝐺 Fn ℕ → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) | 
| 35 | 10, 33, 34 | 3syl 18 | . . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) | 
| 36 | 25, 32, 35 | mpbir2and 713 | . . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
(◡𝐺 “ (𝑀...𝑁))) | 
| 37 | 36 | ne0d 4342 | . . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ≠ ∅) | 
| 38 | 23, 37 | eqnetrd 3008 | . . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) | 
| 39 |  | imadisj 6098 | . . . 4
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = ∅) | 
| 40 | 39 | necon3bii 2993 | . . 3
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) | 
| 41 | 38, 40 | sylibr 234 | . 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) | 
| 42 |  | ffun 6739 | . . . 4
⊢ (𝐺:ℕ⟶𝑍 → Fun 𝐺) | 
| 43 |  | funimacnv 6647 | . . . 4
⊢ (Fun
𝐺 → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) | 
| 44 | 10, 42, 43 | 3syl 18 | . . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) | 
| 45 |  | inss1 4237 | . . 3
⊢ ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁) | 
| 46 | 44, 45 | eqsstrdi 4028 | . 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁)) | 
| 47 |  | simpl 482 | . . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝜑) | 
| 48 |  | elfzuz 13560 | . . . 4
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 49 | 48, 12 | eleqtrrdi 2852 | . . 3
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ 𝑍) | 
| 50 |  | isercoll.f | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) | 
| 51 | 47, 49, 50 | syl2an 596 | . 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹‘𝑛) ∈ ℂ) | 
| 52 | 44 | difeq2d 4126 | . . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺))) | 
| 53 |  | difin 4272 | . . . . . 6
⊢ ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺) | 
| 54 | 52, 53 | eqtrdi 2793 | . . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺)) | 
| 55 | 49 | ssriv 3987 | . . . . . 6
⊢ (𝑀...𝑁) ⊆ 𝑍 | 
| 56 |  | ssdif 4144 | . . . . . 6
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) | 
| 57 | 55, 56 | mp1i 13 | . . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) | 
| 58 | 54, 57 | eqsstrd 4018 | . . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺)) | 
| 59 | 58 | sselda 3983 | . . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺)) | 
| 60 |  | isercoll.0 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) | 
| 61 | 60 | adantlr 715 | . . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) | 
| 62 | 59, 61 | syldan 591 | . 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → (𝐹‘𝑛) = 0) | 
| 63 |  | elfznn 13593 | . . . 4
⊢ (𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ) | 
| 64 |  | isercoll.h | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) | 
| 65 | 47, 63, 64 | syl2an 596 | . . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) | 
| 66 | 17 | eleq2d 2827 | . . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁)))) | 
| 67 | 66 | biimpa 476 | . . . . 5
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁))) | 
| 68 | 67 | fvresd 6926 | . . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺‘𝑘)) | 
| 69 | 68 | fveq2d 6910 | . . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺‘𝑘))) | 
| 70 | 65, 69 | eqtr4d 2780 | . 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈
(1...(♯‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘))) | 
| 71 | 2, 4, 6, 7, 20, 41, 46, 51, 62, 70 | seqcoll2 14504 | 1
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |